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A Resampling-Based Approach to Multiple
Testing with Uncertainty in Phase
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Abstract

Characterizing the genetic correlates to complex diseases requires consideration of a large
number of potentially informative biological markers. In addition, attention to alignment of alleles
within or across chromosomal pairs, commonly referred to as phase, may be essential for
uncovering true biological associations. In the context of population based association studies,
phase is generally unobservable. Preservation of type-1 error in a setting with multiple testing
presents a further analytical challenge. This manuscript combines a likelihood-based approach to
handling missing-ness in phase with a resampling method to adjust for multiple testing. Through
simulations we demonstrate preservation of the family-wise error rate and reasonable power for
detecting associations. The method is applied to a cohort of 626 HIV-1 infected individuals
receiving highly active anti-retroviral therapies, to ascertain potential genetic contributions to
abnormalities in lipid profiles. The haplotypic effects of 2 genes, hepatic lipase (HL) and
endothelial lipase (EL), on high-density lipoprotein cholesterol (HDL-C) are tested.
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1 Introduction

Identifying and characterizing the molecular level contributors to complex dis-
eases, such as cardiovascular disease, typically requires tests of large number
of hypotheses; such tests must appropriately control for type-1 error. In addi-
tion, consideration of how genetic variants within a gene align within or across
chromosomal copies (commonly referred to as phase) may prove essential to
characterizing genetic contributions to variability in a disease trait. This con-
sideration presents an additional analytical challenge, because haplotype is
generally unobservable in association studies of unrelated individuals.

Several methods have been proposed recently to handle unobservable phase
in the context of identifying associations between haplotypes and a disease phe-
notype. These include likelihood-based expectation-maximization (EM)-type
methods as described in Excoffier and Slatkin (1995), Zaykin et al. (2002),
Schaid et al. (2002), Zhao et al. (2003), Lake et al. (2003), and Lin and
Zeng (2006), Markov Chain Monte Carlo (MCMC) approaches as described
in Stephens et al. (2001), and hidden Markov modeling, described in Scheet
and Stephens (2006). These methods make use of information from those sub-
jects whose haplotypes are fully determined based on their observed genotypes.
Methods for controlling type-1 error rates in the context of high-dimensional
data analysis have also been described extensively. These include resampling
based approaches as given in Westfall and Young (1993), Yekutieli and Ben-
jamini (1999), Ge et al. (2003), and Pollard and van der Laan (2004) as well
as a Monte Carlo method (Lin, 2006). A comprehensive discussion of the rel-
ative merits of these approaches, with regard to computational efficiency and
flexibility for handling covariate adjustments, is provided in Lin (2006).

Our proposed methods combine existing likelihood and resampling-based
procedures to adjust for multiplicity of comparisons in the context of phase
uncertainty. This approach extends existing methods for analyzing association
studies of unrelated individuals. Its novelty lies primarily in the way in which
these existing methods are combined; in some cases, modification of existing
resampling procedures is required to handle phase uncertainty. Section 2 de-
scribes the new methods, and Section 3 describes a simulation study. Section 4
provides an application to a study of anti-retroviral therapy (ART) associated
dyslipidemia in HIV-1 infected individuals.
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2 Methods

In population-based association studies of unrelated individuals, heterozygos-
ity at more than one locus within a gene renders haplotypic phase unobserv-
able. Our approach begins by determining the set of haplotype pairs consistent
with each individuals observed genotype, as described by Lin and Zeng (2006).
Treating the true, but unobservable, haplotype as “missing,” the genetic mod-
els can be fit using an EM approach. If haplotype were known, both the free
step-down resampling approach of Westfall and Young (1993) and the method
of Pollard and van der Laan (2004) could be used to test its effects on a mea-
sure of phenotype. The former is based on resampling of model residuals,
whereas the latter resamples from the observed data themselves. To use the
the Westfall and Young approach in our setting, we would sample the residuals
corresponding to each possible haplotype pair for an individual according to
a posterior probability associated with that pair. Here we implement the Pol-
lard and van der Laan (2004) approach because it is more generally applicable.
Both methods provide for appropriate adjustment for multiple comparisons in
the setting of unobservable haplotypes.

2.1 Notation and models

Consider the general linear model in Equation 1, where YN×1 is a vector of
responses for N unrelated individuals, g(·) is an appropriately defined link
function, XN×P represents individual level covariate values, HN×M captures
the haplotype information and ε ∼ N(0, σ2IN×N). Below we distinguish be-
tween two types of models: the genetic model (GM) and the model of associ-
ation (MA). Notably, the number of columns in H (given by M) depends on
the specific model (GM and/or MA) under investigation, while the number
of rows of H (given by N) will always equal the sample size. In the simplest
case, M is equal to the number of possible haplotypes and the (i, j)th element
of H is an indicator that individual i has haplotype j, where i = 1, . . . , N
and j = 1, . . . ,M . In this case, Equation 1 reduces to the usual analysis of
covariance (ANCOVA) model.

g(Y ) = α + Xβ + Hγ + ε (1)

For simplicity of presentation, we assume interest lies in assessing main
effects of haplotypes and not interactions between covariates (given in the X
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matrix) and these haplotypes; however, straightforward extensions of these
models would allow for interaction effects. Consider the general null hypoth-
esis H0 : γj = 0, j = 1, . . . ,M where γj is the jth element of γ in Equation 1.
Using the EM algorithm given by Lake et al. (2003) and Lin and Zeng (2006)
and described in detail in Section 2.2, test statistics (such as Wald test statis-
tics) corresponding to these null hypotheses can be calculated. Additional
application of a resampling based procedure provides a multiple testing ad-
justment in this setting and is described in Section 2.3. First we elaborate on
specific examples of the model provided in Equation 1.

The GM refers to the combined action of two chromosomal copies of a gene.
For example, an additive GM assumes that the effect of having a single copy
of a given haplotype h∗ is half the effect of having 2 copies of this haplotype.
The MA, on the other hand, refers to the interaction among haplotypes across
genes. For example, an additive MA assumes that the effect of having a given
haplotype h∗r at gene r and haplotype h∗s at gene s is the sum of the individual
effects. A multiplicative (or synergistic) MA would instead assume this effect
to be the product of the individual effects.

Underlying GMs and MAs can be represented in the definition of the ma-
trix H in Equation 1. To illustrate, we consider an additive GM within a
single gene. Let H be the set of all haploytypes in the data sample under con-
sideration, and suppose (hk, hl) is the haplotype pair (diplotype) for a given
individual i where hk, hl ∈ H. In this case, the (i, j)th element of the matrix
H is equal to Hij = I(hk = hj) + I(hl = hj), for j = 1, . . . ,M . In other
words, Hij = 0, 1 or 2 depending on whether individual i has 0, 1 or 2 copies
of haplotype hj ∈ H.

As described in Lin and Zeng (2006) for the single gene case, recessive,
dominant and codominant GMs can be represented by Hij = I(hk = hl =
hj), Hij = I(hk = hj) + I(hl = hj) − I(hk = hl = hj) and Hij = I(hk =
hj) + I(hl = hj) + I(hk = hl = hj), respectively. Haploinsufficiency refers
to the GM in which a single functional (wildtype) copy of the gene does not
produce enough gene product, resulting in the disease phenotype; this model
is also represented by appropriate definition of the H matrix. Note that each
haplotype represented in the columns of H can have different GMs, though
generally these are assumed to be the same.

More generally, in the multiple gene framework, consideration must be
given to the joint effects on disease phenotype both of chromosomal copies
within genes and of haplotypes across genes. For example, an additive MA
across R genes can be described for all the aforementioned GMs. This model
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is represented by creating additional columns in the H matrix corresponding
to the haplotypes for each gene under consideration, as in an R-factor ANOVA
model; once again, the elements would be indicator variables defined according
to the GM.

An interaction model or a model for epistasis (interaction in the absence
of main effects) can again be represented through appropriate definition of
the columns of the H matrix. For example, a model for epistasis between 2
genes, assuming a recessive GM for each, is given by Hij′ = I(hrk = hrl =
hrj) ∗ I(hsk = hsl = hsj) where (hrk, hrl) and (hsk, hsl) are the diplotypes
for individual i at genes r and s, respectively. More sophisticated models,
in which, for example, groups of genes in the same pathway to disease act
synergistically with additive effects across groups, can also be represented
using this framework.

2.2 EM to account for missing phase

In general, H of Equation 1 is not observable though for each individual,
there is a finite set of haplotype pairs, Hg that is consistent with the observed
genotype g. For example, if an indvidual’s genotype is Aa and Bb at two
respective SNPs within a gene, then there are two possible haplotype pairs
given by the set [(AB, ab), (Ab, aB)]. By borrowing from the information on
individuals for whom H is fully observed, i.e. individuals who are heterozygous
at exactly one or no SNPs within the gene(s) under consideration, the posterior
probabilities associated with each possible haplotype pair can be estimated.

Several recent manuscripts, including Lake et al. (2003) and Lin and Zeng
(2006), have described the application of the EM algorithm (Laird and Ware,
1982) for estimation and testing of haplotype effects in this unobservable data
setting. Using the notation of Lin and Zeng (2006), the likelihood contribution
for an individual i is given by Equation 2 where G is the set of all possible
genotypes, Hg is again the set of all haplotype pairs that are consistent with
genotype g ∈ G, Gi is the observed genotype for individual i, θ = (α, β, γ, σ)
is the vector of parameters in the model given by Equation 1, π is a parameter
vector of true population level haplotype prevalences, and Φ = (θ, π).

Li(Φ) =
∏
g∈G

 ∑
(hk,hl)∈Hg

Prθ(y|x, (hk, hl))Prπ(hk, hl)

I(Gi=g)

(2)
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In practice, the EM algorithm proceeds by first taking the expectation of
the complete data log likelihood conditional on the observed data, (yi, xi, gi)
where gi is the genotype for individual i and i = 1, . . . , N (E-step). This
conditional expectation is a function of the posterior haplotype probabilities,
denoted pikl(Φ), which are defined simply as the probability of a haplotype
given the observed genotype, phenotype and covariate data. The second step
of the EM algorithm (M-step) maximizes this conditional expectation where
pikl(Φ) is evaluated at the current estimate of Φ. This approach is described
in detail in Lin and Zeng (2006) and summarized below.

E-step: The complete data log likelihood for individual i is given by
Prθ(yi|xi, Hi)Prπ(Hi). The expectation of this likelihood conditional on the
observed data, (yi, xi, gi) is given by (3) where pikl(Φ) is defined as in (4).

N∑
i=1

∑
(hk,hl)∈Hi

pikl(Φ) [logPrθ (yi|xi, (hk, hl)) + logPrπ(hk, hl)] (3)

pikl(Φ) =
Prθ (yi|xi, (hk, hl)) Prπ(hk, hl)∑

(hk,hl)∈Hi
Prθ (yi|xi, (hk, hl)) Prπ(hk, hl)

(4)

M-step: At the (m + 1)st iteration, evaluate pijk(Φ) at Φ̂(m) and maximize
the conditional expected log likelihood, expression ( 3). This maximization
requires solving the system of equations given in (5) where Oθ and Oπ are the
partial derivatives with respect to θ and π respectively. This can be achieved
through a Newton-Raphson algorithm, or under certain assumptions closed
form solutions can be obtained as described in detail in Lin and Zeng (2006).

N∑
i=1

∑
(hk,hl)∈Hi

pikl(Φ̂
(m))Oθlog Prθ (yi|xi, (hk, hl)) = 0

N∑
i=1

∑
(hk,hl)∈Hi

pikl(Φ̂
(m))Oπlog Prπ(hk, hl) = 0

(5)

As described in Lake et al. (2003), assuming an exponential family distri-
bution and Hardy Weinberg equilibrium (HWE), the EM algorithm reduces
to a weighted regression (“EM by the methods of weights”) where the weights
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are set equal to subjects’ posterior haplotype probabilities. Note that HWE
implies πkl = πkπl where πkl is the prevalence of the diplotype (hk, hl), and πk

and πl are the prevalences of hk and hl, respectively. Estimation procedures in
the presence of specific departures from HWE are described in Lin and Zeng
(2006). Inference on haplotype effects generally requires an estimate of the
variance/covariance matrix of Φ, which can be obtained using the information
matrix. Lake et al. also note that the observed information can be computed
using Louis’ formula (Louis, 1982), and that test statistics corresponding to
tests of single haplotype effects can be calculated using the estimated pa-
rameters and variance/covariance matrix (Lake et al., 2003). Straightforward
implementation of this approach is achieved using the haplo.glm() function
of the haplo.stats library in R, version 2.2.1.

2.3 Multiple testing adjustment with uncertainty in
phase

We propose coupling the EM approach described in Section 2.2 with a resam-
pling based multiple testing procedure (MTP). For the latter, we make use
of the approach of Pollard and van der Laan (2004) since its implementation
is straightforward and requires fewer assumptions than do others, such as the
approach of Westfall and Young (1993). Note that our method is appropri-
ate to carry out analyses of covariance when, as described above, the group
assignments (H of Equation 1) are not known with certainty. A modified ver-
sion of the free step-down resampling approach of Westfall and Young (1993),
discussed in Section 5, can also be used, but requires an assumption of subset
pivotality, unlike this approach of Pollard and van der Laan. Subset pivotal-
ity should hold in settings similar to ours, but without uncertainty in phase;
estimates of the conditional probability of a haplotype, however, may depend
on the pattern of true and false null hypotheses. Therefore subset pivotality
may not necessarily hold in small samples.

Consider the null hypotheses H0 : γj = 0 for j = 1, . . . ,M and correspond-
ing Wald test statistics. We begin by fitting the model in Equation 1 using the
method outlined in Section 2.2. The coefficient estimates for each haplotype
are recorded and denoted by the M × 1 vector µ̃n where the jth element of µ̃n

equals the corresponding effect. Testing is based on the following algorithm,
proposed by Pollard and van der Laan (2004):

1. Bootstrap Y , X and H with replacement, preserving the within individ-
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ual link and recalculate coefficient estimates. Denote these by the vector
µ#

n where again the jth element corresponds to the jth test.

2. Record Z#b
n =

(
µ#

n − µ̃n

)
/sd(µ#

n ).

3. Repeat steps (1) and (2) B times to get Z#1
n , . . . , Z#B

n . The distribution
of Z#b

n is given by Q#
0n, which converges to Q0 conditional on the data,

where Q0 is the distribution of the test statistics under the null.

4. Perform single-step method to determine significance cut-off:

(a) Let c = c(Q,α, Pn) ∈ Rp be a vector cut-off such that MT (c)
preserves type-1 error, α.

(b) Define

R#
0n(c) = R(c|Q#

0n) =
J∑

j=1

I(|Z#
jn| > cj) (6)

and let c0n = c(Q#
0n, α) be the common quantiles of Q#

0n such that

Pr
[
R#

0n(c) ≥ k
]

= α.

The resulting constant c is a multiple-comparisons-adjusted cutoff to which
each observed test statistic may be compared. Because the observed test statis-
tics have an additional layer of error introduced by estimation of posterior hap-
lotype probabilities, we use an approximation to the formula of Louis (1982) in
calculating the standard deviation, sd(µ#

n ) at step (2) in the above algorithm.
The approximation is for computation efficiency as described in Lake et al.
(2003) and is straightforward to derive using the haplo.glm() function in the
R library haplo.stats.

3 A simulation study

The method described in Section 2 is evaluated through consideration of type-
1 family-wise error (FWE). We consider an analysis of multiple haplotypes
within a single gene and the null hypotheses H0j : γj = γ1, j = 2, . . . ,M where
M equals the number of observed haplotypes for the gene under consideration
and the columns of the H matrix of Equation 1 are indicators for the presence
of the corresponding haplotypes. Note that this model is an additive genetic
model. Without loss of generality, we let γ1 = 0; this parameter corresponds
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Table 1: Estimated family-wise error and power for detecting haplotype effects

FWEC Power
γ/σ N = 200 N = 400 N = 200 N = 400
0.0 0.044 0.044 - -
0.2 - - 0.10 0.28
0.4 - - 0.58 0.92
0.6 - - 0.94 1.00
0.8 - - 1.00 1.00

to the effect of the most prevalent or referent haplotype. Extension to other
models is straightforward and requires only modification of the matrix H of
Equation 1. The FWE for the complete null is then defined as FWEC =
Pr(reject at least one H0j | all H0j are true) (Westfall and Young, 1993). A
simulation study is performed to investigation the control of FWEC.

Diplotypes for each individual are simulated from assumed haplotype preva-
lences π1, . . . , πM and corresponding genotype data are determined to represent
the observed data. FWE is estimated by first simulating Y according to the
null model (i.e. no haplotype effect): Y = α + ε. We apply the algorithm de-

scribed in Section 2.3 and record K = I
[∑

j I
(
|T̃j| ≥ c

)
≥ 1

]
where T̃j is the

observed data test statistic for j = 2, . . . ,M . This is repeated S times to obtain

K1, . . . ,KS and an estimate of type 1 FWEC is given by F̂WEC =
∑

sKs/S.
We assume an additive genetic model and consider M = 4 possible hap-

lotypes within a single gene, with prevalences equal to 0.4, 0.2, 0.2 and 0.2.
The haplotype with the highest estimated prevalence is treated as the referent
and Wald test statistics are calculated for the null hypotheses that each of
the remaining haplotype effects is 0. We simulate S = 500 datasets; for each,
the algorithm outlined in Section 2.3 is performed where B = 500 resampled
data sets are drawn. Assuming α = 0.05, sample sizes of both N = 200 and

N = 400 yield F̂WEC = 0.044.
Further characterization of this approach is provided through investigation

of estimated power. For this investigation, Y is simulated according to the
alternative model in Equation 1 for a range of effect sizes (β/σ) and sample
sizes and assuming an additive genetic model. In this case S = 100 datasets
for each condition are simulated, and the data are resampled B = 500 times
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to arrive at adjusted p-values. Again, M = 4 haplotypes are assumed with
prevalences equal to (0.4, 0.2, 0.2, 0.2). Power estimates are provided in Table 1
for a single haplotype effect size ranging from 0.2 to 1.0 and sample sizes equal
to N = 200 and 400. These results suggest a sample size of N = 400 will have
greater than 90% power to detect a moderate effect size of 0.4.

4 Example

Potent ARTs delay the onset of clinical disease and death in HIV-1 infected
individuals, but can lead to a host of drug related complications, including
abnormalities in lipid profiles and possibly an accelerated risk of cardiovascular
disease. The large number of available drug regimens, however, allows the
potential for tailoring treatment decisions to individual patient characteristics.
Our investigation aims to identify genetic polymorphisms in the infected host
that modify the risk of cardiovascular disease related outcomes. Ultimately,
understanding the genetic determinants of changes in lipid profiles will help
guide choice of long-term treatment strategies.

We use the method described above to test for haplotypic effects within
two genes, hepatic lipase (HL) and endothelial lipase (EL), on high density
lipoprotein cholesterol (HDL-C) in an HIV-1 infected cohort (N = 626). In
this section we assume an additive genetic model, but discuss alternative mod-
els in Section 5. Genotyping was performed for 4 single nucleotide polymor-
phisms (SNPs) in HL (rs2070895, rs12595191, rs690, rs6084) and 3 SNPs in
EL (rs3829632 (-1309A/G), rs12970066, Asn396Ser). The genetic data were
generated as part of the AIDS Clinical Trials Group (ACTG) New Works
Concept Sheet 224 (NWCS224), and the clinical data were collected across
several ACTG trials. A description of the data and genotyping methods, as
well the primary analysis results, can be found in Foulkes et al. (2006). Due
to population admixture and potential effect modification by race/ethnicity,
as described for this cohort in Foulkes et al. (2006), all analyses are stratified
by race/ethnicity. Estimated haplotype prevalences for HL and EL within
racial/ethnic strata are provided in Table 2.

Fully-adjusted multivariable models are fitted for natural log transformed
HDL-C assuming an additive GM for haplotype effects within EL and HL.
Models are fitted for each gene separately; therefore, the MA is not specified.
Covariates include age, sex, use of lipid lowering therapy, study and current
drug exposures. Drug exposure variables were created for each of the 3 class

9

Foulkes and DeGruttola: Multiple Testing with Uncertainty in Phase



Table 2: Estimated haplotype effects on log-HDL-C and adjusted test results

White/Non-Hispanic (N = 317) Black/Non-Hispanic (N = 92)
Est Prev Est Effect (se) Test Statistic Est Prev Est Effect (se) Test Statistic

EL
AGA 0.281 0.031 (0.026) 1.19 0.211 -0.021 (0.074) -0.29
GCA 0.202 0.074 (0.032) 2.33* - - -
ACA 0.502 REF REF 0.742 REF REF

HL
GGCG 0.184 -0.007 (0.037) -0.18 - - -
AGCT 0.124 -0.043 (0.045) -0.95 0.184 -0.257 (0.133) -1.94
AGCG - - - 0.159 -.118 (0.114) -1.03
AGTT - - - 0.157 0.054 (0.122) 0.44
GGTG - - - 0.116 -0.153 (0.121) -1.26
GGCT 0.308 REF REF 0.123 REF REF

Hispanic (N = 103)
Est Prev Est Effect (se) Test Statistic

EL
AGA 0.205 -0.021 (0.049) -0.42
GCA 0.325 0.030 (0.039) 0.77
ACA 0.456 REF REF

HL
GGCG 0.119 0.107 (0.077) 1.38
AGCT 0.102 -0.034 (0.086) -0.40
AGCG 0.285 0.107 (0.054) 1.97
AGTT - - -
GGTG - - -
GGCT 0.211 REF REF

*Indicates significance at the α = 0.05 level based on the Pollard and van der
Laan (2004) MTP. Rare haplotypes (estimated prevalence < 10%) are indi-
cated by -. REF refers to the referent haplotype and is determined based on
the highest estimated prevalence within Whites/Non-Hispanics.
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of drugs: protease inhibitors (PIs), nucleoside reverse transcriptase inhibitors
(NRTIs) and non-NRTIs (NNRTIs). PI exposure is coded as a 3-level factor
for no exposure, exposure to a non-ritonavir (RTV) containing PI regimen
and exposure to a RTV-containing PI-regimen. NRTI exposure is also coded
as a 3-level factor for no exposure, exposure to a non-thymidine containing
regimen (3TC, ABC and/or DDI) and exposure to a thymidine containing
regimen (ZDV, D4T, Combivir, and/or Trizivir.) Finally, NNRTI is coded as
a 2-level factor indicating any current exposure to a drug in this class. In all
cases, individuals who have exposure to a drug class within 14 days prior to a
blood draw for lipid measurements, but who are not receiving drug from that
class at the time of the blood draw, are excluded from all analysis. Individuals
with short-term exposure to any of the drug class (< 21 days) at the time of
the lipid measurements are also excluded.

Haplotypes with estimated prevalences of less than 10% within race / eth-
nicity groups are pooled as rare haplotypes for the purpose of model fitting
and are included in the models but not tested. The referent haplotype is the
haplotype with the highest estimated prevalence within Whites/non-Hispanics.
The same referent haplotype is used across all race/ethnicities to improve inter-
pretability of results. The referent is determined within Whites/non-Hispanics
because this group has the largest number of observations and provides the
most stable estimates. Adjustments for multiple testing are done within each
race/ethnicity category and within each gene model. Estimated haplotype
effects are provided in Table 2. These results are based on evaluation of
B = 1000 bootstrapped data sets.

As higher levels of HDL-C are considered to be beneficial, positive coef-
ficient estimates suggest a better HDL profile. Although the direction and
magnitude of the effects appear to vary across racial/ethnic groups, this inter-
action could not be tested formally, because of sample size limitations. These
results suggest that in White/non-Hispanics, carrying one copy of the GCA
haplotype in EL results in a fold increase in HDL-C of exp(0.074) = 1.08
compared to the most common ACA haplotype. This increase is significantly
different than 1 at the 0.05 level. Genetic associations between HL variants
and HDL-C is consistent with previous reports, including those of Reilly et al.
(2005), Ma et al. (2003), and deLemos et al. (2002). The lack of observed
haplotype effects in Black/non-Hispanics and Hispanics may be due to sample
size limitations and low power as evidenced in the simulation results.
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5 Discussion

The multiple testing settings we consider require adjustment for covariates.
When there is no justifiable choice for a parametric model, the semi-parametric
approach of Yang and DeGruttola (2006) can be used. To reduce the impact of
mis-modeling of the covariate effect, patients with the same haplotypes can be
matched on the covariate (either exactly or within a caliper) and permutations
performed on matched pairs rather than on individuals. In the context of no
covariates, alternative multiple comparison adjustments, such as the maxT
approach of Westfall and Young (1993) could be considered.

We use an approximation to the formula of Louis (1982) to adjust the test
statistics properly for the uncertainty in haplotype probabilities, both for the
observed data test statistics and the test statistics calculated using the resam-
pled data. Estimation of the null distribution of the test statistics also requires
consideration of the impact of this uncertainty on the resampling. Our simu-
lation study shows that using the Louis formula to correct standard deviations
in the denominator of the test statistics appears to adjust adequately for this
uncertainty because type 1 error is preserved. For confirmation, we applied
the double bootstrap approach of Beran (1987) to a few additional data sets
simulated under the same model described in Section 3 and found that no
futher adjustment was necessary.

We also applied the free step-down resampling approach of Westfall and
Young (1993) to adjust for multiple testing. Notably, this approach requires
subset pivotality, i.e. that the distribution of p-values is the same under the
complete null and any subset of true nulls. While this condition holds in the
context of fully observed haplotype data, it may not be valid in the context of
unknown phase and small sample settings. Application of this method requires
a weighted resampling of the residuals in order to account for uncertainty in
haplotypes. We set these weights equal to the estimated posterior haplotype
probabilities given in Equation 4. Through an additional bootstrap, we found
the impact of disregarding the uncertainty in estimation of posterior haplotype
probabilities for the weighted resampling to be minor. Under the simulation
conditions described in Section 3 and a sample size of N = 400, the estimated
family wise error for the complete null using the Westfall and Young approach
is 0.056, with a range of 0.048 to 0.056 across 5 additional bootstraps. Power
is similar for the two methods.

As with most genetic analyses in small sample settings, it would be desir-
able to obtain independent confirmation of the findings in Section 4. Larger
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sample sizes are also required to achieve adequate power to assess more com-
plex multi-gene and gene-environment interaction models. This is particularly
true in multi-ethnic populations where there is the potential for both popu-
lation admixture and effect modification by race/ethnicity. Primary analysis
of the data presented in this manuscript Foulkes et al. (2006) found differ-
ential gene and drug effects on lipids across racial/ethnic groups. This is
indicative of interactions among race/ethnicity, genes and drug exposures, a
phenomenon distinct from confounding by race/ethnicity. For this reason, we
present all analyses stratified by race/ethnicity. Notably, a stratified analysis
also addresses potential population admixture, and corresponding violations
of HWE, across racial/ethnic groups.

Furthermore, consideration of alternative GMs is important, particularly
when a clear GM has not been described, as is the case with the genes under
consideration in this manuscript. In addition to the additive GM for each
gene, we also explored dominant and recessive GM models in application of
our methods. For these models, no significant haplotype associations with
HDL-C within racial/ethnic strata were detectable. Our findings suggest that
certain genetic characteristics put patients at increased risk for ART associated
cardiovascular complications. Such analyses may ultimately inform changes in
medical practice, such as a modifying ART regimens or administering lipid
lowering therapy in patients at high risk of elevated HDL-C.

Interaction effects among genes in the absence of main effects are possi-
ble. While the example provided did not include this interaction analysis due
to sample size limitations, investigation of the MA we considered is a step
in the development of more complex models. The method presented in this
manuscript will similarly ensure control of type 1 error rates in application of
these models.
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