Article
Licensed
Unlicensed
Requires Authentication
Empirical Bayes Logistic Regression
-
Foteini Strimenopoulou
Published/Copyright:
February 21, 2008
We construct a diagnostic predictor for patient disease status based on a single data set of mass spectra of serum samples together with the binary case-control response. The model is logistic regression with Bernoulli log-likelihood augmented either by quadratic ridge or absolute L1 penalties. For ridge penalization using the singular value decomposition we reduce the number of variables for maximization to the rank of the design matrix. With log-likelihood loss, 10-fold cross-validatory choice is employed to specify the penalization hyperparameter. Predictive ability is judged on a set-aside subset of the data.
Published Online: 2008-2-21
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Editorial
- International Competition on Mass Spectrometry Proteomic Diagnosis
- Introduction Paper
- Case-Control Breast Cancer Study of MALDI-TOF Proteomic Mass Spectrometry Data on Serum Samples
- Organizing a Competition on Clinical Mass Spectrometry Based Proteomic Diagnosis
- Competition Paper
- Application of the Random Forest Classification Method to Peaks Detected from Mass Spectrometric Proteomic Profiles of Cancer Patients and Controls
- Developing a Discrimination Rule between Breast Cancer Patients and Controls Using Proteomics Mass Spectrometric Data: A Three-Step Approach
- Principal Component Discriminant Analysis
- Classification of Breast Cancer versus Normal Samples from Mass Spectrometry Profiles Using Linear Discriminant Analysis of Important Features Selected by Random Forest
- A Classification Model for the Leiden Proteomics Competition
- Empirical Bayes Logistic Regression
- Autocorrelated Logistic Ridge Regression for Prediction Based on Proteomics Spectra
- Support Vector Machine Approach to Separate Control and Breast Cancer Serum Samples
- A Cross-Validation Study to Select a Classification Procedure for Clinical Diagnosis Based on Proteomic Mass Spectrometry
- Clinical Mass Spectrometry Proteomic Diagnosis by Conformal Predictors
- Article
- Assessing the Validity Domains of Graphical Gaussian Models in Order to Infer Relationships among Components of Complex Biological Systems
- Assessment
- Breast Cancer Diagnosis from Proteomic Mass Spectrometry Data: A Comparative Evaluation
Articles in the same Issue
- Editorial
- International Competition on Mass Spectrometry Proteomic Diagnosis
- Introduction Paper
- Case-Control Breast Cancer Study of MALDI-TOF Proteomic Mass Spectrometry Data on Serum Samples
- Organizing a Competition on Clinical Mass Spectrometry Based Proteomic Diagnosis
- Competition Paper
- Application of the Random Forest Classification Method to Peaks Detected from Mass Spectrometric Proteomic Profiles of Cancer Patients and Controls
- Developing a Discrimination Rule between Breast Cancer Patients and Controls Using Proteomics Mass Spectrometric Data: A Three-Step Approach
- Principal Component Discriminant Analysis
- Classification of Breast Cancer versus Normal Samples from Mass Spectrometry Profiles Using Linear Discriminant Analysis of Important Features Selected by Random Forest
- A Classification Model for the Leiden Proteomics Competition
- Empirical Bayes Logistic Regression
- Autocorrelated Logistic Ridge Regression for Prediction Based on Proteomics Spectra
- Support Vector Machine Approach to Separate Control and Breast Cancer Serum Samples
- A Cross-Validation Study to Select a Classification Procedure for Clinical Diagnosis Based on Proteomic Mass Spectrometry
- Clinical Mass Spectrometry Proteomic Diagnosis by Conformal Predictors
- Article
- Assessing the Validity Domains of Graphical Gaussian Models in Order to Infer Relationships among Components of Complex Biological Systems
- Assessment
- Breast Cancer Diagnosis from Proteomic Mass Spectrometry Data: A Comparative Evaluation