Figures and Tables

Figures

Figure 1.1	A graphical rendering of the main concepts related	
	to complex systems	12
Figure 1.2	A logistic map	14
Figure 1.3	Problems and their characteristics	15
Figure 2.1	The Ptolemaic model of the solar system and the	
	deferent/epicycle model for the motion of a planet	23
Figure 2.2	Drawing of a medieval planispheric astrolabe	23
Figure 2.3	Level of aggregation and modelling technique	27
Figure 2.4	System dynamic representation of strategy adoption	28
Figure 2.5	Representation of the system dynamic model as an	
	agent-based model	29
Figure 2.6	Representation of the model building process	30
Figure 2.7	A schematic view of modelling and simulation	42
Figure 3.1	The city of Cremona, Italy	47
Figure 3.2	The conceptual mode of local food consumption	
	(A) and the outcomes of its empirical verification (B)	50
Figure 3.3	Schematic view of the main classes of ML techniques	57
Figure 3.4	Schematic view of a machine learning model	
	implementation	59
Figure 3.5	Rapidminer workflow	60
Figure 3.6	Most frequent origins of Cremona visitors	62
Figure 3.7	Most frequent destinations for Cremona visitors	62
Figure 3.8	A simple network with its adjacency matrix	63
Figure 3.9	The Cremona network and its cumulative degree	
-	distribution	68
Figure 3.10	Average clustering coefficient as a function of degree	69

Figure 3.11	Modularity analysis of Cremona network	70
Figure 3.12	The NetLogo diffusion model	74
Figure 3.13	Simulation results: (A) the cumulative distribution	
C	of infected individuals and (B) the differential	
	distribution	74
Figure 3.14	Causal loop diagram	75
Figure 3.15	Stock and flow diagram	76
Figure 3.16	CLD for a Bass diffusion model	76
Figure 3.17	Stock and flow diagram for the Bass model	77
Figure 3.18	Bass model outcomes when changing simulation	
	parameters	77
Figure 4.1	Graphlets examples	85
Figure 4.2	Multilayer network	88
Figure 4.3	Multilayer network with its supra-adjacency	
	matrix representation	90
Figure 4.4	Layered network and examples of	
	micro-configurations (motifs)	91
Figure 4.5	Representation of an artificial neuron	96
Figure 4.6	A simple neural network	96
Figure 5.1	Balancing the confidence and complication of	
C	a model	105
Figure 5.2	Problem statements, data and modelling techniques	117
Figure 6.1	NetLogo interface of the model implementation	126
Figure 6.2	Difference between observed and simulated tourist	
	flows from country <i>i</i> to country <i>j</i>	129
Figure 6.3	Rapidminer operators for the prediction of	
	cancellations	134
Figure 6.4	Rapidminer setting for the application of a model	
	on H2	134
Figure 6.5	Prediction of cancellations	135
Figure 6.6	Correlation between hotels' occupancy and quality	
S	of network position	139
Figure 6.7	Schematic representation of the system dynamic	
	model	141
Figure 6.8	NetLogo system dynamic build and model	
S	interface implementation	143
Figure c.1	Interrelation between cognitive acts without (A)	
e e	and with (B) action and model of values	148
Figure c.2	A possible approach for studying tourism systems	149

x Figures and Tables

Tables

Table 1.1	Characteristics of simple, complicated and complex	
	systems	10
Table 3.1	A conceptual model for tourism activities and	
	governance in Cremona	50
Table 3.2	Opinions on Cremona	54
Table 3.3	Regression model results	55
Table 3.4	Sample from the input data set	60
Table 3.5	Sample association rules for travellers coming to	
	Cremona	61
Table 3.6	Sample association rules for travellers outgoing from	
	Cremona	61
Table 3.7	Cremona network composition	68
Table 3.8	Main Cremona network metrics	69
Table 3.9	Most relevant actors in the Cremona network	71
Table 5.1	Generalised problem statement and preferred	
	modelling technique	111
Table 5.2	Main features defining the quality of data	114
Table 5.3	Data type and availability and preferred modelling	
	technique	116
Table 6.1	Fitness (ff) and average traveller's discrepancy	
	between simulated and observed (Avg ΔPop) data for	
	the top 10 fitness evaluations	128
Table 6.2	Fitness (ff) loss when changing parameters by 10%	130
Table 6.3	Confusion matrices for the data set H1	136
Table 6.4	Confusion matrices for the data set H2	136
Table 6.5	Percentage difference between models for H1 and H2	136
Table 6.6	Correlation coefficients	138