Home Experimental determination of solubilities of sodium tetraborate (borax) in NaCl solutions, and a thermodynamic model for the Na-B(OH)3-Cl-SO4 system to high-ionic strengths at 25 °C
Article
Licensed
Unlicensed Requires Authentication

Experimental determination of solubilities of sodium tetraborate (borax) in NaCl solutions, and a thermodynamic model for the Na-B(OH)3-Cl-SO4 system to high-ionic strengths at 25 °C

  • Yongliang Xiong EMAIL logo , Leslie Kirkes and Terry Westfall
Published/Copyright: March 7, 2015
Become an author with De Gruyter Brill

Abstract

In this study, solubility experiments on sodium tetraborate (NaB4O7·10H2O, borax) are conducted in NaCl solutions up to 5.0 m at room temperature (22.5 ± 1.5 °C). In combination with solubility data of sodium tetraborate in Na2SO4 solutions from the literature, the solubility constant (log Ksp) for sodium tetraborate for the following reaction

Na2B4O7·10H2O = 2Na+ + 4B(OH)4- + 2H+ + H2O (l)

is determined as -24.80 ± 0.10 based on the Pitzer model. In conjunction with the relevant Pitzer parameters, based on the above log Ksp for borax, and log b1 (0.25 ± 0.01) evaluated from the literature for the following complex formation reaction

Na+ + B(OH)4- = NaB(OH)4(aq)

a thermodynamic model with high precision is established for the Na+-B(OH)3-Cl--SO42- system at high-ionic strengths up to saturation of halite (NaCl), mirabilite (Na2SO4·10H2O), and thenardite (Na2SO4). The model is validated by comparison of model predicted equilibrium compositions for the assemblages of borax alone, borax + halite, borax + mirabilite, borax + halite + thenardite, and borax + mirabilite + thenardite in the mixtures of NaCl+Na2SO4 to ionic strengths of 8.0 m, with independent experimental values from the literature. The differences in concentrations of major ions, e.g., Na+, Cl-, and SO42-, between model predicted and experimental values are generally <0.5%. The difference for total boron concentrations is <0.05 m with an error <25%.

The revised thermodynamic model is applied to the potential recovery of borax from boronenriched brines via evaporation at 25 °C, using the two brines from China as examples. The reaction path calculations suggest that the brine from the Zhabei Salt Lake in Xizang (Tibet) Autonomous Region, is suitable to recovery of borax via evaporation at 25 °C, whereas the brine from the western Sichuan Province, although it is enriched in boron, is not suitable to extraction of boron as borax, but is suitable to extraction of potassium as sylvite, via evaporation at 25 °C.

Received: 2012-11-8
Accepted: 2013-7-2
Published Online: 2015-3-7
Published in Print: 2013-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Highlights and Breakthroughs. Lessons from a lost technology: The secrets of Roman concrete
  2. Crossroads in Earth and Planetary Materials. H-D interdiffusion in brucite at pressures up to 15 GPa
  3. Amorphous Materials: Properties, structure, and durability. North American microtektites are more oxidized than tektites
  4. Actinides in Geology, Energy, and the Environment. Vorlanite, (CaU6+)O4, from Jabel Harmun, Palestinian Autonomy, Israel
  5. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Mössbauer parameters of iron in sulfate minerals
  6. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Looking for jarosite on Mars: The low-temperature crystal structure of jarosite
  7. Compressibility and structural stability of two variably hydrated olivine samples. (FO97Fa3) to 34 GPa by X-ray diffraction and Raman spectroscopy
  8. Interaction between composition and temperature effects on non-bridging oxygen and high-coordinated aluminum in calcium aluminosilicate glasses
  9. Topotactic transformation and dehydration of the zeolite gismondine to a novel Ca feldspar structure
  10. The origin of melanophlogite, a clathrate mineral, in natrocarbonatite lava at Oldoinyo Lengai, Tanzania
  11. Clay mineral evolution
  12. Experimental determination of solubilities of sodium tetraborate (borax) in NaCl solutions, and a thermodynamic model for the Na-B(OH)3-Cl-SO4 system to high-ionic strengths at 25 °C
  13. Thermodynamic basis for evolution of apatite in calcified tissues
  14. A first-principles calculation of the elastic and vibrational anomalies of lizardite under pressure
  15. Acoustic velocity measurements for stishovite across the post-stishovite phase transition under deviatoric stress: Implications for the seismic features of subducting slabs in the mid-mantle
  16. A new framework topology in the dehydrated form of zeolite levyne
  17. Mid- and far-infrared spectra of synthetic CaMg2(Al4–xGax)(Si1–yGey)O10(OH,OD)2- clintonite: Characterization and assignment of the Ca-Oinner and Ca-Oouter stretching bands
  18. Mechanism of mineral transformations in krennerite, Au3AgTe8, under hydrothermal conditions
  19. Cubic perovskite polymorph of strontium metasilicate at high pressures
  20. Size distributions of nanoparticles from magnetotactic bacteria as signatures of biologically controlled mineralization
  21. Medium-range order in disordered K-feldspars by multinuclear NMR
  22. Infrared signatures of OH-defects in wadsleyite: A first-principles study
  23. K-Ar dating and δ18O-δD characterization of nanometric illite from Ordovician. K-bentonites of the Appalachians: Illitization and the Acadian-Alleghenian tectonic activity
  24. New morphological, chemical, and structural data of woolly erionite-Na from Durkee, Oregon, U.S.A.
  25. New experimental data on phase relations for the system Na2CO3-CaCO3 at 6 GPa and 900–1400 ºC
  26. Melting and subsolidus phase relations in the system Na2CO3-MgCO3±H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle
  27. A critical comment on Ertl et al. (2012): “Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline”
  28. Letter. Developing vanadium valence state oxybarometers (spinel-melt, olivine-melt, spinel-olivine) and V/(Cr+Al) partitioning (spinel-melt) for martian olivine-phyric basalts
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2013.4398/html
Scroll to top button