Home Aluminous and alkali-deficient tourmaline from the Singhbhum Shear Zone, East Indian shield: Insight for polyphase boron infiltration during regional metamorphism
Article
Licensed
Unlicensed Requires Authentication

Aluminous and alkali-deficient tourmaline from the Singhbhum Shear Zone, East Indian shield: Insight for polyphase boron infiltration during regional metamorphism

  • Nandini Sengupta EMAIL logo , Pulak Sengupta and Himanshu Kumar Sachan
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

In the western part of the Singhbhum Shear Zone (SSZ), East Indian Shield, borosilicate-bearing veins of variable thickness (tens of micrometers to 1 m thick) are hosted in kyanite-quartzite and kyanite-mica schist. The veins have been classified into three types, which are, from oldest to youngest, generation I (tourmaline), II (dumortierite + tourmaline), and III (tourmaline) veins. Alkali- and Mg-rich tourmaline [XMg = Mg/(Mg + Fe) = 0.68 ± 0.09; X = Na, Ca, K, □ (vacancy) = 0.40 ± 0.12] is the sole borosilicate in generation I veins, which have been folded in response to regional deformation. Generation II veins were emplaced along shear bands (1 mm to 1 m thick) developed parallel to the axial planes of these folds. Long axes of fibrous dumortierite and prismatic tourmaline of generation II veins are oriented along the shear bands and have been bent around lenticular remnants of host kyanite-quartzite. Generation III veins have a dendritic pattern, crosscut generation II veins and show aggregates of fibrous to acicular tourmaline. Prismatic tourmaline in generation II veins is optically zoned with a green tourmaline core that is variably replaced and rimmed by blue tourmaline. Fibrous to acicular tourmaline in generation III veins is comprised up of blue tourmaline with compositions similar to the rim composition of prismatic tourmaline in generation II veins. Green and blue tourmaline is aluminous (Al total >7 apfu) and alkali-deficient (X = 0.71 ± 0.08). High YAl content, high X, low XMg (0.19 ± 0.10), and excess cation charge indicate tourmaline in generation II veins is rich in an “oxy-foitite” component. Foitite-rich tourmaline in generation III veins has tetrahedral Al and a slightly lower Mg-content and X than those of generation II veins. Optical zoning in prismatic tourmaline corresponds to an abrupt compositional change with paragenetically older green tourmaline having higher Al and XMg, but lower alkali content in the X-site than the blue tourmaline rim. The compositional variation in green and blue tourmaline can be explained by a combination of coupled substitutions represented by AlO[R(OH)]-1 and Al(NaR)-1, where R = (Fe2+ + Mg). Pseudosections in the system Na2O-K2O-Al2O3-SiO2-H2O constructed from bulk chemical compositions of the studied rocks and the P-T slopes of two isochors computed from brine-rich inclusions trapped in quartz grains indicate that borosilicate formation in generation II and III veins occurred within 4.1 ± 0.5 kbar and 377 ± 21 °C. The mineral assemblages and textures suggest that the borosilicate-bearing veins formed from infiltration-driven alteration of host kyanite-quartzite and kyanite-mica schist along structurally controlled conduits by more than one batch of chemically distinct boron-rich aqueous fluids.

Received: 2010-3-19
Accepted: 2010-12-24
Published Online: 2015-4-2
Published in Print: 2011-5-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Comparative in situ X-ray diffraction study of San Carlos olivine: Influence of water on the 410 km seismic velocity jump in Earth’s mantle
  2. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry
  3. Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite
  4. Translation interface modulation in NC-pyrrhotites: Direct imaging by TEM and a model toward understanding partially disordered structural states
  5. Crystal chemistry of Ti-rich fluorophlogopite from Presidente Olegario, Alto Paranaíba igneous province, Brazil
  6. First-principles study of diffusion and viscosity of anorthite (CaAl2Si2O8) liquid at high pressure
  7. Aluminous and alkali-deficient tourmaline from the Singhbhum Shear Zone, East Indian shield: Insight for polyphase boron infiltration during regional metamorphism
  8. Effect of lactate, glycine, and citrate on the kinetics of montmorillonite dissolution
  9. Acid neutralization by dissolution of alkaline paper mill wastes and implications for treatment of sulfide-mine drainage
  10. Fast ion conduction character and ionic phase-transition in silver sulfosalts: The case of fettelite [Ag6As2S7][Ag10HgAs2S8]
  11. Structure of walstromite, BaCa2Si3O9, and its relationship to CaSiO3-walstromite and wollastonite-II
  12. Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics
  13. Formation conditions for triple-chain silicates
  14. In situ determination of the spinel–post-spinel transition in Fe3O4 at high pressure and temperature by synchrotron X-ray diffraction
  15. PVT equation of state of epsilon iron and its densities at inner core conditions
  16. Pressure-induced structural phase transition of the iron end-member of ringwoodite (g-Fe2SiO4) investigated by X-ray diffraction and Mössbauer spectroscopy
  17. Non-bridging oxygen and high-coordinated aluminum in metaluminous and peraluminous calcium and potassium aluminosilicate glasses: High-resolution 17O and 27Al MAS NMR results
  18. The crystal structure of δ-Al(OH)3: Neutron diffraction measurements and ab initio calculations
  19. Electrical properties of natural and synthetic nano-crystalline MgTiO3 geikielite at mantle pressure and temperature conditions
  20. Density measurement of liquid FeS at high pressures using synchrotron X-ray absorption
  21. Cranswickite MgSO4·4H2O, a new mineral from Calingasta, Argentina
  22. Ambrinoite, (K,NH4)2(As,Sb)8S13·H2O, a new mineral from Upper Susa Valley, Piedmont, Italy: The first natural (K,NH4)-hydrated sulfosalt
  23. Single-crystal Raman spectroscopy of natural schafarzikite FeSb2O4 from Pernek, Slovak Republic
  24. Nomenclature of the tourmaline-supergroup minerals
  25. Quantitative Raman spectroscopy: Challenges, shortfalls, and solutions—Application to calcium silicate glasses
  26. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal
  27. Sulfides from martian and lunar basalts: Comparative chemistry for Ni, Co, Cu, and Se
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2011.3560/html
Scroll to top button