Home Microhardness, toughness, and modulus of Mohs scale minerals
Article
Licensed
Unlicensed Requires Authentication

Microhardness, toughness, and modulus of Mohs scale minerals

  • Margaret E. Broz EMAIL logo , Robert F. Cook and Donna L. Whitney
Published/Copyright: March 31, 2015
Become an author with De Gruyter Brill

Abstract

We report new results of microhardness and depth-sensing indentation (DSI) experiments for the fist nine minerals in the Mohs scale: talc, gypsum, calcite, fluorite, apatite, orthoclase, quartz, topaz, and corundum. The Mohs scale is based on a relative measure of scratch resistance, but because scratching involves both loading and shearing, scratch resistance is not equivalent to hardness as measured by modern loading (indentation) methods; scratch resistance is also related to other material properties (fracture toughness, elastic modulus). To better understand the relationship of hardness to scratch resistance, we systematically determined hardness, fracture toughness, and elastic modulus for Mohs minerals. We measured hardness and toughness using microindentation, and modulus and hardness with DSI (.nanoindentation.) experiments. None of the measured properties increases consistently or linearly with Mohs number for the entire scale.

Received: 2004-11-3
Accepted: 2005-6-1
Published Online: 2015-3-31
Published in Print: 2006-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Dana Lecture. Rates of Fe, Mg, Mn, and Ca diffusion in garnet
  2. An FTIR study of hydrogen in anorthoclase and associated melt inclusions
  3. First occurrence of iodine in natural sulfosalts: The case of mutnovskite, Pb2AsS3(I,Cl,Br), a new mineral from the Mutnovsky volcano, Kamchatka Peninsula, Russian Federation
  4. The real topological conÞ guration of the extra-framework content in alkali-poor beryl: A multi-methodological study
  5. A low-temperature heat-capacity study of synthetic anhydrous Mg-cordierite (Mg2Al4Si5O18)
  6. Dissolution kinetics of pyrochlore ceramics for the disposition of plutonium
  7. Oxy-amphibole equilibria in Ti-bearing calcic amphiboles: Experimental investigation and petrologic implications for mantle-derived amphiboles
  8. Fe2+/Fe3+ charge ordering in contact layers of lamellar magnetism: Bond valence arguments
  9. Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania)
  10. Anomalously high Fe contents in rehomogenized olivine-hosted melt inclusions from oxidized magmas
  11. The rate of ferrihydrite transformation to goethite via the Fe(II) pathway
  12. Phase transitions and volumetric properties of cryolite, Na3AlF6: Differential thermal analysis to 100 MPa
  13. The crystal structure of dissakisite-(La) and structural variations after annealing of radiation damage
  14. Effects of metal protection coils on thermocouple EMF in multi-anvil high-pressure experiments
  15. First-principles study of the OH-stretching modes of gibbsite
  16. In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation
  17. High-pressure proton disorder in brucite
  18. Microhardness, toughness, and modulus of Mohs scale minerals
  19. Effects of pH, temperature, and aqueous organic material on the dissolution kinetics of meta-autunite minerals, (Na, Ca)2-1[(UO2)(PO4)]2⋅3H2O
  20. InterstratiÞ ed kaolinite-smectite: Nature of the layers and mechanism of smectite kaolinization
  21. The kinetics of the α → β transition in synthetic nickel monosulÞ de
  22. An electron microprobe analysis, secondary ion mass spectrometry, and single-crystal X-ray diffraction study of phlogopites from Mt. Vulture, Potenza, Italy: Consideration of cation partitioning
  23. Unique W-rich alloy of Os and Ir and associated Fe-rich alloy of Os, Ru, and Ir from California
  24. Schreyerite, V2Ti3O9: New occurrence and crystal structure
  25. A cold-sealing capsule design for synthesis of fluid inclusions and other hydrothermal experiments in a piston-cylinder apparatus
  26. Complete solid-solution between Na3Al2(PO4)3 and Mg3Al2(SiO4)3 garnets at high pressure
Downloaded on 5.10.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2006.1844/html
Scroll to top button