Hexagonal magnetite in Algoma-type banded iron formations of the ca. 2.52 Ga Baizhiyan Formation, North China: Evidence for a green rust precursor?
-
Longfei Sun
Abstract
Banded iron formations (BIFs) are iron-rich marine chemical sedimentary rocks, and their mineralogy and geochemistry can be used to gain insights into ancient ocean chemistry and biospheric evolution. Magnetite is the major iron-bearing mineral in many BIFs (particularly in the Archean) and is variably interpreted to be of primary, early diagenetic, or metamorphic origin. Different genetic interpretations for magnetite lead to divergent pictures of the Precambrian Earth system and its evolutionary models through time. The Baizhiyan Formation of the Neoarchean Wutai Group (Shanxi, North China) features magnetite-bearing, Algoma-type BIFs deposited ca. 2.52 Ga, in the lead-up to a major period of global iron formation deposition in the Paleoproterozoic. Abundant magnetite crystals found in the silica-rich bands of these BIFs show euhedral, hexagonal morphology. We suggest that this hexagonal magnetite likely represents pseudomorphs after green rust, a mixed-valence iron hydroxy-salt formed in the water column. The rare earth element composition of the BIFs shows negligible to slightly positive Ce anomalies (CeSN/CeSN* = 1.03 ± 0.07), which is characteristic of a dominantly anoxic water column. The presence of positive Eu anomalies (EuSN/EuSN* <3.9) suggests a substantial influence from proximal hydrothermal fluids. The co-occurrence of siderite layers associated with the magnetite-bearing strata may indicate iron cycling associated with ferruginous bottom seawater conditions. Geochemical signatures of the Baizhiyan BIFs are consistent with the interpretation that the magnetite was transformed from metastable green rust. This green rust could have formed via several processes, including the partial oxidation of Fe(II) by molecular oxygen/photoferrotrophs, the reaction of settling ferrihydrite with Fe(II)-rich hydrothermal fluids under anoxic conditions, or local dissimilatory iron reduction. In all cases, the contribution of primary green rust to BIF formation requires iron redox cycling, and similar pseudomorphs in the form of hexagonal magnetite may be more common in the geological record. Our findings support the models in which green rust was an important primary constituent of the Precambrian iron cycle, and the potential interactions of green rust with other elements (e.g., phosphorus) should be taken into consideration when reconstructing Precambrian biogeochemical cycles.
Funding statement: The study was supported by the National Natural Science Foundation of China (Nos. 41930320, 41972028), the Key Research Program of the Institute of Geology & Geophysics, CAS (No. IGGCAS-201905), the Chinese “111” project (B20011), and by the Fundamental Research Funds for the Central Universities (Nos. 2652019093, 2652019250). Maxwell Lechte acknowledges a funding from the Fonds de Recherche du Québec—Nature et Technologies.
References cited
Alexander, B.W., Bau, M., Andersson, P., and Dulski, P. (2008) Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72, 378–394.10.1016/j.gca.2007.10.028Search in Google Scholar
Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., Kaufman, A.J., Gordon, G.W., Scott, C., Garvin, J., and Buick, R. (2007) A whiff of oxygen before the great oxidation event? Science, 317, 1903–1906.10.1126/science.1140325Search in Google Scholar
Armenteros, I. (2010) Chapter 2 diagenesis of carbonates in continental settings. Developments in Sedimentology, 62, 61–135.10.1016/S0070-4571(09)06202-5Search in Google Scholar
Ayers, D.E. (1972) Genesis of iron-bearing minerals in banded iron formation mesobands in the Dales Gorge Member, Hamersley Group, Western Australia. Economic Geology, 67, 1214–1233.10.2113/gsecongeo.67.8.1214Search in Google Scholar
Bai, J. (1986) The Early Precambrian Geology of Wutaishan, 435 p, Tianjin, China. Tianjin Science and Technology Press (in Chinese).Search in Google Scholar
Bai, J., and Dai, F.Y. (1998) Archean crust of China. Precambrian Crust Evolution of China, 86 p. Geological Publishing House (in Chinese).10.1007/978-3-662-03697-6Search in Google Scholar
Bai, J., Wang, R.Z., and Guo, J.J. (1992) The Major Geologic Events of Early Precambrian and Their Dating in Wutaishan Region, 55 p. Geological Publishing House (in Chinese).Search in Google Scholar
Barthélémy, K., Naille, S., Despas, C., Ruby, C., and Mallet, M. (2012) Carbonated ferric green rust as a new material for efficient phosphate removal. Journal of Colloid and Interface Science, 384, 121–127.10.1016/j.jcis.2012.06.038Search in Google Scholar
Bau, M., and Dulski, P. (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.10.1016/0301-9268(95)00087-9Search in Google Scholar
Bau, M., and Möller, P. (1993) Rare earth element systematics of the chemically precipitated component in early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochimica et Cosmochimica Acta, 57, 2239–2249.10.1016/0016-7037(93)90566-FSearch in Google Scholar
Bauer, K.W., Byrne, J.M., Kenward, P., Simister, R.L., Michiels, C.C., Friese, A., Vuillemin, A., Henny, C., Nomosatryo, S., Kallmeyer, J., and others (2020) Magnetite biomineralization in ferruginous waters and early earth evolution. Earth and Planetary Science Letters, 549, 116495.10.1016/j.epsl.2020.116495Search in Google Scholar
Bekker, A., Slack, J.F., Planavsky, N., Krapež, B., Hofmann, A., Konhauser, K.O., and Rouxel, O.J. (2010) Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105, 467–508.10.2113/gsecongeo.105.3.467Search in Google Scholar
Bekker, A., Planavsky, N., Krapež, B., Rasmussen, B., Hofmann, A., Slack, J.F., Konhauser, K.O., and Rouxel, O.J. (2014) Iron formations: Their origins and implications for ancient seawater chemistry. Geochemistry, 12, 561–628.10.1016/B978-0-08-095975-7.00719-1Search in Google Scholar
Bell, P.E., Mills, A.L., and Herman, J.S. (1987) Biogeochemical conditions favoring magnetite formation during anaerobic iron reduction. Applied and Environmental Microbiology, 53, 2610–2616.10.1128/aem.53.11.2610-2616.1987Search in Google Scholar
Berner, R.A. (1971) Principles of Chemical Sedimentology. McGraw-Hill, New York, 240 p.Search in Google Scholar
Berner, R.A. (1981) A new geochemical classification of sedimentary environments. Journal of Sedimentary Research, 51, 359–366.Search in Google Scholar
Beukes, N.J., and Gutzmer, J.E.N.S. (2008) Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Economic Geology, 15, 5–47.10.5382/Rev.15.01Search in Google Scholar
Beukes, N.J., and Klein, C. (1990) Geochemistry and sedimentology of a facies transition—from microbanded to granular iron-formation—in the early Proterozoic Transvaal Supergroup. Precambrian Research, 47, 99–139.10.1016/0301-9268(90)90033-MSearch in Google Scholar
Beukes, N.J., Klein, C., Kaufman, A.J., and Hayes, J.M. (1990) Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Economic Geology and the Bulletin of the Society of Economic Geologists, 85, 663–690.10.2113/gsecongeo.85.4.663Search in Google Scholar
Byrne, R.H., and Sholkovitz, E.R. (1996) Marine chemistry and geochemistry of the lanthanides. Handbook on the Physics and Chemistry of the Rare Earths, 23, 497–593.10.1016/S0168-1273(96)23009-0Search in Google Scholar
Chaudhuri, S.K., Lack, J.G., and Coates, J.D. (2001) Biogenic Magnetite Formation through Anaerobic Biooxidation of Fe(II). Applied and Environmental Microbiology, 67, 2844–2848.10.1128/AEM.67.6.2844-2848.2001Search in Google Scholar PubMed PubMed Central
Cox, G.M., Halverson, G.P., Poirier, A., Le Heron, D., Strauss, J.V., and Stevenson, R. (2016) A model for Cryogenian iron formation. Earth and Planetary Science Letters, 433, 280–292.10.1016/j.epsl.2015.11.003Search in Google Scholar
Crowe, S.A., Jones, C.A., Katsev, S., Magen, C., O’Neill, A.H., Sturm, A., Canfield, D.E., Haffner, G.D., Mucci, A., Sundby, B., and Fowle, D.A. (2008) Photoferrotrophs thrive in an Archean Ocean analogue. Proceedings of the National Academy of Sciences, 105, 15938–15943.10.1073/pnas.0805313105Search in Google Scholar PubMed PubMed Central
Dauphas, N., John, S.G., and Rouxel, O. (2017) Iron isotope systematics. Reviews in Mineralogy and Geochemistry, 82, 415–510.10.1515/9783110545630-012Search in Google Scholar
de Baar, H.J., German, C.R., Elderfield, H., and Van Gaans, P. (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochimica Acta, 52, 1203–1219.10.1016/0016-7037(88)90275-XSearch in Google Scholar
Derry, L.A., and Jacobsen, S.B. (1988) The Nd and Sr isotopic evolution of Proterozoic seawater. Geophysical Research Letters, 15, 397–400.10.1029/GL015i004p00397Search in Google Scholar
Derry, L.A., and Jacobsen, S.B. (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochimica et Cosmochimica Acta, 54, 2965–2977.10.1016/0016-7037(90)90114-ZSearch in Google Scholar
Dymek, R.F., and Klein, C. (1988) Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma isua supercrustal belt, West Greenland. Precambrian Research, 39, 247–302.10.1016/0301-9268(88)90022-8Search in Google Scholar
Eren, M., and Kadir, S. (1999) Colour origin of upper Cretaceous pelagic red sediments within the Eastern Pontides, northeast Turkey. International Journal of Earth Sciences, 88, 593–595.10.1007/s005310050287Search in Google Scholar
Eugster, H.P., and Chou, I.M. (1973) The depositional environments of Precambrian banded iron-formations. Economic Geology, 68, 1144–1168.10.2113/gsecongeo.68.7.1144Search in Google Scholar
Ewers, W.E., and Morris, R.C. (1981) Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia. Economic Geology, 76, 1929–1953.10.2113/gsecongeo.76.7.1929Search in Google Scholar
Fischer, W.W., and Knoll, A.H. (2009) An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation. Geological Society of America Bulletin, 121, 222–235.10.1130/B26328.1Search in Google Scholar
Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W., and Li, S.M. (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 62, 3239–3257.10.1016/S0016-7037(98)00243-9Search in Google Scholar
Fryer, B.J. (1977) Rare earth evidence in iron-formations for changing Precambrian oxidation states. Geochimica et Cosmochimica Acta, 41, 361–367.10.1016/0016-7037(77)90263-0Search in Google Scholar
Fryer, B.J., Kerrich, R., Hutchinson, R.W., Peirce, M.G., and Rogers, D.S. (1979) Archaean precious-metal hydrothermal systems, Dome Mine, Abitibi Green-stone Belt. I. Patterns of alteration and metal distribution. Canadian Journal of Earth Sciences, 16, 421–439.10.1139/e79-040Search in Google Scholar
Gallagher, P.K., and Warne, S. (1981) Thermomagnetometry and thermal decomposition of siderite. Thermochimica Acta, 43, 253–267.10.1016/0040-6031(81)85183-0Search in Google Scholar
Garcia, T.I., Gorton, M.P., Li, H., Wortmann, U.G., and Spooner, E.T. (2016) The geochemistry of the 2.75 Ga-old Helen Iron Formation, Wawa, Ontario–insights into iron formation deposition from carbon isotopes and rare earth elements. Precambrian Research, 275, 357–368.10.1016/j.precamres.2016.01.013Search in Google Scholar
Géhin, A., Ruby, C., Abdelmoula, M., Benali, O., Ghanbaja, J., Refait, P., and Génin, J.R. (2002) Synthesis of Fe(II-III) hydroxysulphate green rust by coprecipitation. Solid State Sciences, 4, 61–66.10.1016/S1293-2558(01)01219-5Search in Google Scholar
Génin, J.R., Ruby, C., Géhin, A., and Refait, P.C. (2006) Synthesis of green rusts by oxidation of Fe(OH)2, their products of oxidation and reduction of ferric oxyhydroxides; Eh-pH Pourbaix diagrams. Comptes Rendus Geoscience, 338, 433–446.10.1016/j.crte.2006.04.004Search in Google Scholar
German, C.R., and Elderfield, H. (1989) Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochimica et Cosmochimica Acta, 53, 2561–2571.10.1016/0016-7037(89)90128-2Search in Google Scholar
Golden, D.C., Ming, D.W., Morris, R.V., Brearley, A.J., Lauer, H.V. Jr., Treiman, A.H., Zolensky, M.E., Schwandt, C.S., Lofgren, G.E., and McKay, G.A. (2004) Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. American Mineralogist, 89, 681–695.10.2138/am-2004-5-602Search in Google Scholar
Graf, J.L. (1977) Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks. Economic Geology, 72, 527–548.10.2113/gsecongeo.72.4.527Search in Google Scholar
Graf, J.L. (1978) Rare earth elements, iron formations and sea water. Geochimica et Cosmochimica Acta, 42, 1845–1850.10.1016/0016-7037(78)90239-9Search in Google Scholar
Gross, G.A. (1983) Tectonic systems and the deposition of iron-formation. Precambrian Research, 20, 171–187.10.1016/S0166-2635(08)70242-1Search in Google Scholar
Guilbaud, R., Poulton, S.W., Thompson, J., Husband, K.F., Zhu, M., Zhou, Y., Shields, G.A., and Lenton, T.M. (2020) Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen. Nature Geoscience, 13, 296–301.10.1038/s41561-020-0548-7Search in Google Scholar
Halevy, I., Alesker, M., Schuster, E.M., Popovitz-Biro, R., and Feldman, Y. (2017) A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10, 135–139.10.1038/ngeo2878Search in Google Scholar
Halverson, G.P., Poitrasson, F., Hoffman, P.F., Nédélec, A., Montel, J.M., and Kirby, J. (2011) Fe isotope and trace element geochemistry of the Neoproterozoic Syn-glacial Rapitan iron formation. Earth and Planetary Science Letters, 309, 100–112. 300–112.10.1016/j.epsl.2011.06.021Search in Google Scholar
Han, T.M. (1978) Microstructures of magnetite as guides to its origin in some Precambrian iron-formations. Fortschritte Der Mineralogie, 56, 105–142.Search in Google Scholar
Han, T.M. (1982) Iron formations of Precambrian age: Hematite-magnetite relationships in some Proterozoic iron deposits—A microscopic observation. In G.C. Amstutz, G. Frenzel, C. Kluth, G. Moh, A. Wauschkuhn, R.A. Zimmermann, and A. El Goresy, Eds., Ore Genesis, 451–459 p. Springer-Verlag.10.1007/978-3-642-68344-2_46Search in Google Scholar
Han, C., Xiao, W., Su, B., Asamoah Sakyi, P., Ao, S., Zhang, J., Wan, B., Song, D., Zhang, Z., Wang, Z., and Ding, J. (2017) Neoarchean Algoma-type banded iron formation from the Northern Shanxi, the Trans-North China Orogen: SIMS U-Pb age, origin and tectonic setting. Precambrian Research, 303, 548–572.10.1016/j.precamres.2017.06.023Search in Google Scholar
Hansen, H., and Poulsen, I.F. (1999) Interaction of synthetic sulphate “green rust” with phosphate and the crystallization of vivianite. Clays and Clay Minerals, 47, 312–318.10.1346/CCMN.1999.0470307Search in Google Scholar
Heider, F., Dunlop, D.J., and Sugiura, N. (1987) Magnetic properties of hydrothermally recrystallized magnetite crystals. Science, 236, 1287–1290.10.1126/science.236.4806.1287Search in Google Scholar PubMed
Heimann, A., Johnson, C.M., Beard, B.L., Valley, J.W., Roden, E.E., Spicuzza, M.J., and Beukes, N.J. (2010) Fe, C and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth and Planetary Science Letters, 294, 8–18.10.1016/j.epsl.2010.02.015Search in Google Scholar
Isley, A.E., and Abbott, D.H. (1999) Plume-related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research: Solid Earth, 104, 15461–15477.10.1029/1999JB900066Search in Google Scholar
Jiao, Y., Kappler, A., Croal, L.R., and Newman, D.K. (2005) Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, rhodopseudomonas palustris strain TIE-1. Applied and Environmental Microbiology, 71, 4487–4496.10.1128/AEM.71.8.4487-4496.2005Search in Google Scholar PubMed PubMed Central
Johnson, C.M., Beard, B.L., Beukes, N.J., Klein, C., and O’Leary, J.M. (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal craton. Contributions to Mineralogy and Petrology, 144, 523–547.10.1007/s00410-002-0418-xSearch in Google Scholar
Johnson, C.M., Beard, B.L., Klein, C., Beukes, N.J., and Roden, E.E. (2008a) Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochimica et Cosmochimica Acta, 72, 151–169.10.1016/j.gca.2007.10.013Search in Google Scholar
Johnson, C.M., Beard, B.L., and Roden, E.E. (2008b) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth. Annual Review of Earth and Planetary Sciences, 36, 457–493.10.1146/annurev.earth.36.031207.124139Search in Google Scholar
Kappler, A., Pasquero, C., Konhauser, K.O., and Newman, D.K. (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe (II)-oxidizing bacteria. Geology, 33, 865–868.10.1130/G21658.1Search in Google Scholar
Kaufman, A.J. (1996) Geochemical and mineralogic effects of contact metamorphism on banded iron-formation: An example from the Transvaal Basin, South Africa. Precambrian Research, 79, 171–194.10.1016/0301-9268(95)00093-3Search in Google Scholar
Klein, C. (2005) Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90, 1473–1499.10.2138/am.2005.1871Search in Google Scholar
Klinkhammer, G., Elderfield, H., and Hudson, A. (1983) Rare earth elements in seawater near hydrothermal vents. Nature, 305, 185–188.10.1038/305185a0Search in Google Scholar
Koehler, M.C., Buick, R., Kipp, M.A., Stüeken, E.E., and Zaloumis, J. (2018) Transient surface ocean oxygenation recorded in the ~2.66 Ga Jeerinah Formation, Australia. Proceedings of the National Academy of Sciences, 115, 7711–7716.10.1073/pnas.1720820115Search in Google Scholar PubMed PubMed Central
Koeksoy, E., Sundman, A., Byrne, J.M., Lohmayer, R., Planer-Friedrich, B., Halevy, I., Konhauser, K.O., and Kappler, A. (2019) Formation of green rust and elemental sulfur in an analogue for oxygenated ferro-euxinic transition zones of Precambrian oceans. Geology, 47, 211–214.10.1130/G45501.1Search in Google Scholar
Köhler, I., Konhauser, K.O., Papineau, D., Bekker, A., and Kappler, A. (2013) Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications, 4, 1741.10.1038/ncomms2770Search in Google Scholar PubMed
Konhauser, K.O., Hamade, T., Raiswell, R., Morris, R.C., Ferris, F.G., Southam, G., and Canfield, D.E. (2002) Could bacteria have formed the Precambrian banded iron formations? Geology, 30, 1079–1082.10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2Search in Google Scholar
Konhauser, K.O., Newman, D.K., and Kappler, A. (2005) The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology, 3, 167–177.10.1111/j.1472-4669.2005.00055.xSearch in Google Scholar
Konhauser, K.O., Planavsky, N.J., Hardisty, D.S., Robbins, L.J., Warchola, T.J., Haugaard, R., Lalonde, S.V., Partin, C.A., Oonk, P.B.H., Tsikos, H., and others (2017) Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Science Reviews, 172, 140–147.10.1016/j.earscirev.2017.06.012Search in Google Scholar
Krapež, B., Barley, M.E., and Pickard, A.L. (2003) Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: Sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology, 50, 979–1011.10.1046/j.1365-3091.2003.00594.xSearch in Google Scholar
Laakso, T.A., and Schrag, D.P. (2018) Limitations on limitation. Global Biogeo-chemical Cycles, 32, 486–496.10.1130/abs/2017AM-306231Search in Google Scholar
Lantink, M.L., Oonk, P.B.H., Floor, G.H., Tsikos, H., and Mason, P.R.D. (2018) Fe isotopes of a 2.4 Ga hematite-rich IF constrain marine redox conditions around the GOE. Precambrian Research, 305, 218–235.10.1016/j.precamres.2017.12.025Search in Google Scholar
Li, Y.L. (2012) Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early Precambrian oceans. Astrobiology, 12, 1100–1108.10.1089/ast.2012.0847Search in Google Scholar
Li, S., Zhao, G., Wilde, S.A., Zhang, J., Sun, M., Zhang, G., and Dai, L. (2010) Deformational history of the Hengshan-Wutai-Fuping belt: Implications for the evolution of the Trans-North China Orogen. Gondwana Research, 18, 611–631.10.1016/j.gr.2010.03.003Search in Google Scholar
Li, Y.L., Konhauser, K.O., Cole, D.R., and Phelps, T. J. (2011) Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39, 707–710.10.1130/G32003.1Search in Google Scholar
Li, W., Huberty, J.M., Beard, B., Kita, N.T., Valley, J.W., and Johnson, C.M. (2013a) Contrasting behaviour of oxygen and iron isotopes in banded iron formations revealed by in situ isotopic analysis. Earth and Planetary Science Letters, 384, 132–143.10.1016/j.epsl.2013.10.014Search in Google Scholar
Li, Y.L., Konhauser, K.O., Kappler, A., and Hao, X.L. (2013b) Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations. Earth and Planetary Science Letters, 361, 229–237.10.1016/j.epsl.2012.10.025Search in Google Scholar
Li, C., Planavsky, N.J., Love, G.D., Reinhard, C.T., Hardisty, D., Feng, L., Bates, S.M., Huang, J., Zhang, Q., Chu, X., and Lyons, T.W. (2015) Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochimica et Cosmochimica Acta, 150, 90–105.10.1016/j.gca.2014.12.005Search in Google Scholar
Li, Y.L., Konhauser, K.O., and Zhai, M. (2017) The formation of magnetite in the early Archean oceans. Earth and Planetary Science Letters, 466, 103–114.10.1016/j.epsl.2017.03.013Search in Google Scholar
Li, J., Menguy, N., Leroy, E., Roberts, A.P., Liu, P., and Pan, Y. (2020) Biomineralization and magnetism of uncultured magnetotactic coccus strain THC-1 with non-chained magnetosomal magnetite nanoparticles. Journal of Geophysical Research: Solid Earth, 125.10.1029/2020JB020853Search in Google Scholar
Lin, Y., Tang, D., Shi, X., Zhou, X., and Huang, K. (2019) Shallow-marine ironstones formed by microaerophilic iron-oxidizing bacteria in terminal Paleoproterozoic. Gondwana Research, 76, 1–18.10.1016/j.gr.2019.06.004Search in Google Scholar
Ling, H.F., Chen, X., Li, D.A., Wang, D., Shields-Zhou, G.A., and Zhu, M. (2013) Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research, 225, 110–127.10.1016/j.precamres.2011.10.011Search in Google Scholar
Liu, A.Q., Tang, D.J., Shi, X.Y., Zhou, L.M., Zhou, X.Q., Shang, M.H., Li, Y., and Song, H.Y. (2019) Growth mechanisms and environmental implications of carbonate concretions from the ~1.4 Ga Xiamaling Formation. Journal of Palaeogeography, 8, 285–300.10.1186/s42501-019-0036-4Search in Google Scholar
Lyons, T.W., Reinhard, C.T., and Planavsky, N.J. (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506, 307–315.10.1038/nature13068Search in Google Scholar PubMed
Matthews, A. (1976) Magnetite formation by the reduction of hematite with iron under hydrothermal conditions. American Mineralogist, 61, 927–932.Search in Google Scholar
Meldrum, F.C., Mann, S., Heywood, B.R., Frankel, R.B., and Bazylinski, D.A. (1993) Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proceedings of the Royal Society of London. Series B: Biological Sciences, 251, 231–236.10.1098/rspb.1993.0034Search in Google Scholar
Men, Y., Wang, E., Fu, J., Jia, S., You, X., and He, Q. (2020) Geochemical constraints on the genesis of the Ekou banded iron formation, Shanxi Province, North China. International Journal of Earth Sciences, 109, 2851–2868.10.1007/s00531-020-01935-4Search in Google Scholar
Miot, J., Li, J., Benzerara, K., Sougrati, M.T., Ona-Nguema, G., Bernard, S., Jumas, J.-C., and Guyot, F. (2014) Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochimica et Cosmochimica Acta, 139, 327–343.10.1016/j.gca.2014.04.047Search in Google Scholar
Morris, R.C. (1985) Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes–a conceptual model. Handbook of Strata-Bound and Stratiform Ore Deposits, 13, 73–235.10.1016/B978-0-444-42497-6.50006-0Search in Google Scholar
Morris, R.C. (1993) Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Research, 60, 243–286.10.1016/0301-9268(93)90051-3Search in Google Scholar
Mozley, P. S. (1989) Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, 17, 704–706.10.1130/0091-7613(1989)017<0704:RBDEAT>2.3.CO;2Search in Google Scholar
Mücke, A., and Cabral, A.R. (2005) Redox and nonredox reactions of magnetite and hematite in rocks. Geochemistry, 65, 271–278.10.1016/j.chemer.2005.01.002Search in Google Scholar
O’Loughlin, E.J., Gorski, C.A., Scherer, M.M., Boyanov, M.I., and Kemner, K.M. (2010) Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (γ-FeOOH) and the formation of secondary mineralization products. Environmental Science & Technology, 44, 4570–4576.10.1021/es100294wSearch in Google Scholar
O’Loughlin, E., Gorski, C., and Scherer, M. (2015) Effects of phosphate on secondary mineral formation during the bioreduction of akaganeite (β-FeOOH): Green rust versus framboidal magnetite. Current Inorganic Chemistry, 5, 214–224.10.2174/1877944105666150421001126Search in Google Scholar
Ohmoto, H. (2003) Nonredox transformations of magnetite-hematite in hydrothermal systems. Economic Geology, 98, 157–161.10.2113/gsecongeo.98.1.157Search in Google Scholar
Ohmoto, H., Watanabe, Y., and Kumazawa, K. (2004) Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billion years ago. Nature, 429, 395–399.10.1038/nature02573Search in Google Scholar
Ona-Nguema, G., Abdelmoula, M., Jorand, F., Benali, O., Géhin, A., Block, J.C., and Génin, J.R. (2002) Iron(II,III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction. Environmental Science & Technology, 36, 16–20.10.1021/es0020456Search in Google Scholar
Otake, T., Wesolowski, D.J., Anovitz, L.M., Allard, L.F., and Ohmoto, H. (2007) Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions. Earth and Planetary Science Letters, 257, 60–70.10.1016/j.epsl.2007.02.022Search in Google Scholar
Pantke, C., Obst, M., Benzerara, K., Morin, G., Ona-Nguema, G., Dippon, U., and Kappler, A. (2012) Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environmental Science & Technology, 46, 1439–1446.10.1021/es2016457Search in Google Scholar PubMed
Pecoits, E., Gingras, M.K., Barley, M.E., Kappler, A., Posth, N.R., and Konhauser, K.O. (2009) Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Research, 172, 163–187.10.1016/j.precamres.2009.03.014Search in Google Scholar
Pedersen, H.D., Postma, D., Jakobsen, R., and Larsen, O. (2005) Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe (II). Geochimica et Cosmochimica Acta, 69, 3967–3977.10.1016/j.gca.2005.03.016Search in Google Scholar
Peng, D.F., Beysen, S., Li, Q., Sun, Y.F., and Yang, L.Y. (2010) Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets. Particuology, 8, 386–389.10.1016/j.partic.2010.05.003Search in Google Scholar
Percak-Dennett, E.M., Beard, B.L., Xu, H., Konishi, H., Johnson, C.M., and Roden, E.E. (2011) Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology, 9, 205–220.10.1111/j.1472-4669.2011.00277.xSearch in Google Scholar PubMed
Perry, E.C., Tan, F.C., and Morey, G.B. (1973) Geology and stable isotope geochemistry of the Biwabik Iron Formation, northern Minnesota. Economic Geology, 68, 1110–1125.10.2113/gsecongeo.68.7.1110Search in Google Scholar
Planavsky, N., Bekker, A., Rouxel, O.J., Kamber, B., Hofmann, A., Knudsen, A., and Lyons, T.W. (2010) Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74, 6387–6405.10.1016/j.gca.2010.07.021Search in Google Scholar
Planavsky, N.J., Reinhard, C.T., Wang, X.L., Thomson, D., McGoldrick, P., Rainbird, R.H., Johnson, T., Fischer, W.W., and Lyons, T.W. (2014a) Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science (New York, N.Y.), 346, 635–638.10.1126/science.1258410Search in Google Scholar PubMed
Planavsky, N.J., Asael, D., Hofmann, A., Reinhard, C.T., Lalonde, S.V., Knudsen, A., Wang, X., Ossa, F., Pecoits, E., Smith, A.J.B., and others (2014b) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geoscience, 7, 283–286.10.1038/ngeo2122Search in Google Scholar
Posth, N.R., Konhauser, K.O., and Kappler, A. (2013a) Microbiological processes in banded iron formation deposition. Sedimentology, 60, 1733–1754.10.1111/sed.12051Search in Google Scholar
Posth, N.R., Köhler, I., Swanner, E.D., Schroder, C., Wellmann, E., Binder, B., Konhauser, K.O., Neumann, U., Berthold, C., Nowak, M., and Kappler, A. (2013b) Simulating Precambrian banded iron formation diagenesis. Chemical Geology, 362, 66–73.10.1016/j.chemgeo.2013.05.031Search in Google Scholar
Rasmussen, B., and Muhling, J.R. (2018) Making magnetite late again: Evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations. Precambrian Research, 306, 64–93.10.1016/j.precamres.2017.12.017Search in Google Scholar
Rasmussen, B., Fletcher, I.R., Bekker, A., Muhling, J.R., Gregory, C.J., and Thorne, A.M. (2012) Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth. Nature, 484, 498–501.10.1038/nature11021Search in Google Scholar PubMed
Rasmussen, B., Meier, D.B., Krapež, B., and Muhling, J.R. (2013) Iron silicate microgranules as precursor sediments to 2.5-billion-year-old banded iron formations. Geology, 41, 435–438.10.1130/G33828.1Search in Google Scholar
Rasmussen, B., Krapež, B., Muhling, J.R., and Suvorova, A. (2015a) Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s first iron age. Geology, 43, 303–306.10.1130/G36309.1Search in Google Scholar
Rasmussen, B., Krapež, B., and Muhling, J.R. (2015b) Seafloor silicification and hardground development during deposition of 2.5 Ga banded iron formations. Geology, 43, 235–238.10.1130/G36363.1Search in Google Scholar
Rasmussen, B., Muhling, J.R., Suvorova, A., and Krapež, B. (2017) Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archaean carbonate platform. Precambrian Research, 290, 49–62.10.1016/j.precamres.2016.12.005Search in Google Scholar
Rasmussen, B., Muhling, J.R., and Fischer, W.W. (2019) Evidence from laminated chert in banded iron formations for deposition by gravitational settling of iron-silicate muds. Geology, 47, 167–170.10.1130/G45560.1Search in Google Scholar
Raye, U., Pufahl, P.K., Kyser, T.K., Ricard, E., and Hiatt, E.E. (2015) The role of sedimentology, oceanography, and alteration on the δ56Fe value of the Sokoman Iron Formation, Labrador Trough, Canada. Geochimica et Cosmochimica Acta, 164, 205–220.10.1016/j.gca.2015.05.020Search in Google Scholar
Rego, E.S., Busigny, V., Lalonde, S.V., Philippot, P., Bouyon, A., Rossignol, C., Babinski, M., and Cássia Zapparoli, A. (2021) Anoxygenic photosynthesis linked to Neoarchean iron formations in Carajás (Brazil). Geobiology, 19, 326–341. https://doi.org/10.1111/gbi.1243810.1111/gbi.12438Search in Google Scholar
Reinhard, C.T., Planavsky, N.J., Robbins, L.J., Partin, C.A., Gill, B.C., Lalonde, S.V., Bekker, A., Konhauser, K.O., and Lyons, T.W. (2013) Proterozoic ocean redox and biogeochemical stasis. Proceedings of the National Academy of Sciences, 110, 5357–5362.10.1073/pnas.1208622110Search in Google Scholar
Robbins, E.I., Kourtidou-Papadeli, C., Iberall, A.S., Nord, G.L. Jr., and Sato, M. (2016) From Precambrian iron-formation to terraforming Mars: The JIMES expedition to Santorini. Geomicrobiology Journal, 33, 1–16.10.1080/01490451.2015.1074322Search in Google Scholar
Romanek, C.S., Jiménez-López, C., Navarro, A.R., Sánchez-Román, M., Sahai, N., and Coleman, M. (2009) Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature. Geochimica et Cosmochimica Acta, 73, 5361–5376.10.1016/j.gca.2009.05.065Search in Google Scholar
Ruby, C., Aïssa, R., Géhin, A., Cortot, J., Abdelmoula, M., and Génin, J.-M. (2006) Green rusts synthesis by coprecipitation of FeII-FeIII ions and mass-balance diagram. Comptes Rendus Geoscience, 338, 420–432.10.1016/j.crte.2006.04.008Search in Google Scholar
Ruby, C., Abdelmoula, M., Naille, S., Renard, A., Khare, V., Ona-Nguema, G., Morin, G., and Génin, J.R. (2010) Oxidation modes and thermodynamics of FeII-III oxyhydroxycarbonate green rust: Dissolution-precipitation versus in situ deprotonation. Geochimica et Cosmochimica Acta, 74, 953–966.10.1016/j.gca.2009.10.030Search in Google Scholar
Sawicki, J.A., Brown, D.A., and Beveridge, J. (1995) Microbial precipitation of siderite and protoferrihydrite in a biofilm. Canadian Mineralogist, 33, 1–6.Search in Google Scholar
Schnetzler, C.C., and Philpotts, J.A. (1970) Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II. Geochimica et Cosmochimica Acta, 34, 331–340.10.1016/0016-7037(70)90110-9Search in Google Scholar
Schwertmann, U., and Kämpf, N. (1985) Properties of Goethite and Hematite in Kaolinitic Soils of Southern and Central Brazil. Soil Science, 139, 344–350.10.1097/00010694-198504000-00008Search in Google Scholar
Sholkovitz, E.R., and Schneider, D.L. (1991) Cerium redox cycles and rare earth elements in the Sargasso Sea. Geochimica et Cosmochimica Acta, 55, 2737–2743.10.1016/0016-7037(91)90440-GSearch in Google Scholar
Simonson, B.M. (1985) Sedimentological constraints on the origins of Precambrian iron-formations. Geological Society of America Bulletin, 96, 244–252.10.1130/0016-7606(1985)96<244:SCOTOO>2.0.CO;2Search in Google Scholar
Simonson, B.M., Chan, M.A., and Archer, A.W. (2003) Origin and evolution of large Precambrian iron formations. Special Papers Geological Society of America, 231–244.10.1130/0-8137-2370-1.231Search in Google Scholar
Stumm, W., and Lee, G.F. (1961) Oxygenation of ferrous iron. Industrial & Engineering Chemistry, 53, 143–146.10.1021/ie50614a030Search in Google Scholar
Sumoondur, A., Shaw, S., Ahmed, I., and Benning, L.G. (2008) Green rust as a precursor for magnetite: An in situ synchrotron based study. Mineralogical Magazine, 72, 201–204.10.1180/minmag.2008.072.1.201Search in Google Scholar
Sun, S., and Li, Y.L. (2017) Geneses and evolutions of iron-bearing minerals in banded iron formations of >3760 to ca. 2200 million-year-old: constraints from electron microscopic, X-ray diffraction and Mossbauer spectroscopic investigations. Precambrian Research, 289, 1–17.10.1016/j.precamres.2016.11.010Search in Google Scholar
Sun, S., Konhauser, K.O., Kappler, A., and Li, Y.L. (2015) Primary hematite in Neoarchean to Paleoproterozoic oceans. Geological Society of America Bulletin, 127, 850–861.10.1130/B31122.1Search in Google Scholar
Sylvestre, G., Laure, T.N.E., Djibril, K.N.G., Arlette, D.S., Cyriel, M., Timoleon, N., and Paul, N.J. (2017) A mixed seawater and hydrothermal origin of Superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: constraints from petrography and geochemistry. Ore Geology Reviews, 80, 860–875.10.1016/j.oregeorev.2016.08.021Search in Google Scholar
Tang, D., Shi, X., Wang, X., and Jiang, G. (2016) Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Research, 276, 145–157.10.1016/j.precamres.2016.02.005Search in Google Scholar
Tang, D., Shi, X., Jiang, G., Wu, T., Ma, J., and Zhou, X. (2018) Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and environmental implications. Gondwana Research, 58, 1–15.10.1016/j.gr.2018.01.013Search in Google Scholar
Tang, D., Ma, J., Shi, X., Lechte, M., and Zhou, X. (2020) The formation of marine red beds and iron cycling on the Mesoproterozoic North China platform. American Mineralogist, 105, 1412–1423.10.2138/am-2020-7406Search in Google Scholar
Tian, Y.Q. (1991) Geology and Mineralization of the Wutai-Hengshan Greenstone Belt, 152 p. Taiyuan, China. Shanxi Science and Technology Press (in Chinese).Search in Google Scholar
Tice, M.M., and Lowe, D.R. (2004) Photosynthetic microbial mats in the 3,416 Myr-old ocean. Nature, 431, 549–552.10.1038/nature02888Search in Google Scholar PubMed
Tosca, N.J., Guggenheim, S., and Pufahl, P.K. (2016) An authigenic origin for Precambrian greenalite: Implications for iron formation and the chemistry of ancient seawater. Geological Society of America Bulletin, 128, 511–530.10.1130/B31339.1Search in Google Scholar
Trendall, A.F. (2002) The significance of iron-formation in the Precambrian stratigraphic record. Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems, 33–66. https://doi.org/10.1002/9781444304312.ch310.1002/9781444304312.ch3Search in Google Scholar
Trower, E.J., and Lowe, D.R. (2016) Sedimentology of the 3.3 Ga upper Mendon Formation, Barberton Greenstone Belt, South Africa. Precambrian Research, 281, 473–494.10.1016/j.precamres.2016.06.003Search in Google Scholar
Usman, M., Abdelmoula, M., Hanna, K., Grégoire, B., Faure, P., and Ruby, C. (2012a) FeII induced mineralogical transformations of ferric oxyhydroxides into magnetite of variable stoichiometry and morphology. Journal of Solid State Chemistry, 194, 328–335.10.1016/j.jssc.2012.05.022Search in Google Scholar
Usman, M., Hanna, K., Abdelmoula, M., Zegeye, A., Faure, P., and Ruby, C. (2012b) Formation of green rust via mineralogical transformation of ferric oxides (ferrihydrite, goethite and hematite). Applied Clay Science, 64, 38–43.10.1016/j.clay.2011.10.008Search in Google Scholar
Usman, M., Byrne, J.M., Chaudhary, A., Orsetti, S., Hanna, K., Ruby, C., Kappler, A., and Haderlein, S.B. (2018) Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals. Chemical Reviews, 118, 3251–3304.10.1021/acs.chemrev.7b00224Search in Google Scholar PubMed
Viehmann, S., Bau, M., Smith, A.J., Beukes, N.J., Dantas, E.L., and Bühn, B. (2015) The reliability of ~2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematics. Journal of African Earth Sciences, 111, 322–334.10.1016/j.jafrearsci.2015.08.013Search in Google Scholar
Vuillemin, A., Richard, W., Kemnitz, H., Schleicher, A.M., Friese, A., Bauer, K.W., Simister, R., Nomosatryo, S., Ordoñ, L., Ariztegui, D., and others (2019) Formation of diagenetic siderite in modern ferruginous sediments. Geology, 47, 540–544.10.1130/G46100.1Search in Google Scholar
Wang, Z.H., Wilde, S.A., Wang, K.Y., and Yu, L.J. (2004) A MORB-arc basalt–adakite association in the 2.5 Ga Wutai greenstone belt: Neoarchaean magmatism and crustal growth in the North China Craton. Precambrian Research, 131, 323–343.10.1016/j.precamres.2003.12.014Search in Google Scholar
Wang, C.L., Zhang, L.C., Lan, C.Y., and Dai, Y.P. (2014) Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: Implications for their origin and tectonic setting. Precambrian Research, 255, 603–626.10.1016/j.precamres.2014.08.002Search in Google Scholar
Wang, C., Ding, L., Zhang, L.Y., Kapp, P., Pullen, A., and Yue, Y.H. (2016) Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262, 320–333.10.1016/j.lithos.2016.07.021Search in Google Scholar
Warke, M.R., Rocco, T.D., Zerkle, A.L., Lepland, A., Prave, A.R., Martin, A.P., Ueno, Y., Condon, D.J., and Claire, M.W. (2020) The great oxidation event preceded a Paleoproterozoic “snowball Earth”. Proceedings of the National Academy of Sciences, 117, 13314–13320.10.46427/gold2020.2812Search in Google Scholar
Webb, G.E., and Kamber, B.S. (2000) Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64, 1557–1565.10.1016/S0016-7037(99)00400-7Search in Google Scholar
Wiesli, R.A., Beard, B.L., and Johnson, C.M. (2004) Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and green rust in abiotic systems. Chemical Geology, 211, 343–362.10.1016/j.chemgeo.2004.07.002Search in Google Scholar
Wilde, S.A., Cawood, P.A., Wang, K.Y., Nemchin, A.A., and Zhao, G.C. (2004) Determining Precambrian crustal evolution in China: A case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. Geological Society of London, 226, 5–25.10.1144/GSL.SP.2004.226.01.02Search in Google Scholar
Wilde, S.A., Cawood, P.A., Wang, K.Y., and Nemchin, A.A. (2005) Granitoid evolution in the Late Archaean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24, 597–613.10.1016/j.jseaes.2003.11.006Search in Google Scholar
Wittkop, C., Teranes, J., Lubenow, B., and Dean, W.E. (2014) Carbon-and oxygen-stable isotopic signatures of methanogenesis, temperature, and water column stratification in Holocene siderite varves. Chemical Geology, 389, 153–166.10.1016/j.chemgeo.2014.09.016Search in Google Scholar
Wu, C.H., and Zhong, C.T. (1998) The Paleoproterozoic SW-NE collision model for the central North China Craton. Progress in Precambrian Research, 21, 28–50 (in Chinese).Search in Google Scholar
Xie, B.Z., Sun, L.F., Fang, H., Shi, X.Y., and Tang, D.J. (2021) Siderite in banded iron formation from Neoarchean Baizhiyan Formation, Shanxi Province: genesis and paleoenvironmental implications. Journal of Palaeogeography, 23, 175–190 (in Chinese with English abstract).Search in Google Scholar
Zegeye, A., Mustin, C., and Jorand, F. (2010) Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite. Geobiology, 8, 209–222.10.1111/j.1472-4669.2010.00238.xSearch in Google Scholar PubMed
Zegeye, A., Bonneville, S., Benning, L.G., Sturm, A., Fowle, D.A., Jones, C., Canfield, D.E., Ruby, C., Maclean, L.C., Nomosatryo, S., Crowe, S., and Poulton, S.W. (2012) Green rust formation controls nutrient availability in a ferruginous water column. Geology, 40, 599–602.10.1130/G32959.1Search in Google Scholar
Zhao, G., Sun, M., Wilde, S.A., and Sanzhong, L. (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136, 177–202.10.1016/j.precamres.2004.10.002Search in Google Scholar
Zheng, X.Y., Beard, B.L., Reddy, T.R., Roden, E.E., and Johnson, C.M. (2016) Abiologic silicon isotope fractionation between aqueous Si and Fe (III)–Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks. Geochimica et Cosmochimica Acta, 187, 102–122.10.1016/j.gca.2016.05.012Search in Google Scholar
Zhou, L.M., Wang, R., Hou, Z.Q., Li, C., Zhao, H., Li, X.W., and Qu, W.J. (2018) Hot Paleocene-Eocene Gangdese arc: Growth of continental crust in southern Tibet. Gondwana Research, 62, 178–197.10.1016/j.gr.2017.12.011Search in Google Scholar
© 2022 Mineralogical Society of America
Articles in the same Issue
- Ab initio study of the structure and relative stability of MgSiO4H2 polymorphs at high pressures and temperatures
- Thermal conductivity of single-crystal brucite at high pressures: Implications for thermal anomaly in the shallow lower mantle
- Magmatic volatiles and platinum-group element mineralization in the Stillwater layered intrusion, U.S.A
- Impact of fluorine on the thermal stability of phlogopite
- Ferrous hydroxychlorides hibbingite [γ-Fe2(OH)3Cl] and parahibbingite [β-Fe2(OH)3Cl] as a concealed sink of Cl and H2O in ultrabasic and granitic systems
- Chukochenite, (Li0.5Al0.5)Al2O4, a new lithium oxyspinel mineral from the Xianghualing skarn, Hunan Province, China
- Ground-truthing the pyrite trace element proxy in modern euxinic settings
- Interplay between fluid circulation and Alpine metamorphism in the Monte Rosa whiteschist from white mica and quartz in situ oxygen isotope analysis by SIMS
- Atomic-scale structure and non-stoichiometry of meteoritic hibonite: A transmission electron microscope study
- Synthesis, structure, and single-crystal elasticity of Al-bearing superhydrous phase B
- Specific roles of sodium for the formation process of manganese-substituted octacalcium phosphate
- Oxygen isotope heterogeneity of olivine crystals in orogenic peridotites from Songshugou, North Qinling Orogen: Petrogenesis and geodynamic implications
- Effects of arsenic on the distribution and mode of occurrence of gold during fluid-pyrite interaction: A case study of pyrite from the Qiucun gold deposit, China
- Xuite, Ca3Fe2[(Al,Fe)O3(OH)]3, a new mineral of the garnet group: Implications for the wide occurrence of nanominerals
- Raman spectroscopy-based screening of zircon for reliable water content and oxygen isotope measurements
- Halogen (F, Cl, Br, I) contents in silt and clay fractions of a Cambisol from a temperate forest
- Resolving sub-micrometer-scale zonation of trace elements in quartz using TOF-SIMS
- Hexagonal magnetite in Algoma-type banded iron formations of the ca. 2.52 Ga Baizhiyan Formation, North China: Evidence for a green rust precursor?
- Presentation of the Dana Medal of the Mineralogical Society of America for 2021 to Sergey Krivovichev
- Acceptance of the Dana Medal of the Mineralogical Society of America for 2021
- Presentation of the 2021 MSA Distinguished Public Service Medal to Denton Ebel
- Acceptance of the Distinguished Public Service Medal of the Mineralogical Society of America for 2021
- Presentation of the Mineralogical Society of America Award for 2021 to Chenguang Sun
- Acceptance of the Mineralogical Society of America Award for 2021
- Presentation of the 2021 Roebling Medal of the Mineralogical Society of America to George Rossman
- Acceptance of the 2021 Roebling Medal of the Mineralogical Society of America
Articles in the same Issue
- Ab initio study of the structure and relative stability of MgSiO4H2 polymorphs at high pressures and temperatures
- Thermal conductivity of single-crystal brucite at high pressures: Implications for thermal anomaly in the shallow lower mantle
- Magmatic volatiles and platinum-group element mineralization in the Stillwater layered intrusion, U.S.A
- Impact of fluorine on the thermal stability of phlogopite
- Ferrous hydroxychlorides hibbingite [γ-Fe2(OH)3Cl] and parahibbingite [β-Fe2(OH)3Cl] as a concealed sink of Cl and H2O in ultrabasic and granitic systems
- Chukochenite, (Li0.5Al0.5)Al2O4, a new lithium oxyspinel mineral from the Xianghualing skarn, Hunan Province, China
- Ground-truthing the pyrite trace element proxy in modern euxinic settings
- Interplay between fluid circulation and Alpine metamorphism in the Monte Rosa whiteschist from white mica and quartz in situ oxygen isotope analysis by SIMS
- Atomic-scale structure and non-stoichiometry of meteoritic hibonite: A transmission electron microscope study
- Synthesis, structure, and single-crystal elasticity of Al-bearing superhydrous phase B
- Specific roles of sodium for the formation process of manganese-substituted octacalcium phosphate
- Oxygen isotope heterogeneity of olivine crystals in orogenic peridotites from Songshugou, North Qinling Orogen: Petrogenesis and geodynamic implications
- Effects of arsenic on the distribution and mode of occurrence of gold during fluid-pyrite interaction: A case study of pyrite from the Qiucun gold deposit, China
- Xuite, Ca3Fe2[(Al,Fe)O3(OH)]3, a new mineral of the garnet group: Implications for the wide occurrence of nanominerals
- Raman spectroscopy-based screening of zircon for reliable water content and oxygen isotope measurements
- Halogen (F, Cl, Br, I) contents in silt and clay fractions of a Cambisol from a temperate forest
- Resolving sub-micrometer-scale zonation of trace elements in quartz using TOF-SIMS
- Hexagonal magnetite in Algoma-type banded iron formations of the ca. 2.52 Ga Baizhiyan Formation, North China: Evidence for a green rust precursor?
- Presentation of the Dana Medal of the Mineralogical Society of America for 2021 to Sergey Krivovichev
- Acceptance of the Dana Medal of the Mineralogical Society of America for 2021
- Presentation of the 2021 MSA Distinguished Public Service Medal to Denton Ebel
- Acceptance of the Distinguished Public Service Medal of the Mineralogical Society of America for 2021
- Presentation of the Mineralogical Society of America Award for 2021 to Chenguang Sun
- Acceptance of the Mineralogical Society of America Award for 2021
- Presentation of the 2021 Roebling Medal of the Mineralogical Society of America to George Rossman
- Acceptance of the 2021 Roebling Medal of the Mineralogical Society of America