Home Fluorapatite-monazite-allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden
Article
Licensed
Unlicensed Requires Authentication

Fluorapatite-monazite-allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden

  • Erik Jonsson EMAIL logo , Daniel E. Harlov , Jaroslaw Majka , Karin Högdahl and Katarina Persson-Nilsson
Published/Copyright: July 30, 2016
Become an author with De Gruyter Brill

Abstract

Fluorapatite-monazite-xenotime-allanite mineralogy, petrology, and textures are described for a suite of Kiruna-type apatite-iron oxide ore bodies from the Grängesberg Mining District in the Bergslagen ore province, south central Sweden. Fluorapatite occurs in three main lithological assemblages. These include: (1) the apatite-iron oxide ore bodies, (2) breccias associated with the ore bodies, which contain fragmented fluorapatite crystals, and (3) the variably altered host rocks, which contain sporadic, isolated fluorapatite grains or aggregates that are occasionally associated with magnetite in the silicate mineral matrix. Fluorapatite associated with the ore bodies is often zoned, with the outer rim enriched in Y+REE compared to the inner core. It contains sparse monazite inclusions. In the breccia, fluorapatite is rich in monazite-(Ce) ± xenotime-(Y) inclusions, especially in its cores, along with reworked, larger monazite grains along fluorapatite and other mineral grain rims. In the host rocks, a small subset of the fluorapatite grains contain monazite ± xenotime inclusions, while the large majority are devoid of inclusions. Overall, these monazites are relatively poor in Th and U. Allanite-(Ce) is found as inclusions and crack fillings in the fluorapatite from all three assemblage types as well as in the form of independent grains in the surrounding silicate mineral matrix in the host rocks. The apatite-iron oxide ore bodies are proposed to have an igneous, sub-volcanic origin, potentially accompanied by explosive eruptions, which were responsible for the accompanying fluorapatite-rich breccias. Metasomatic alteration of the ore bodies probably began during the later stages of crystallization from residual, magmatically derived HCl- and H2SO4-bearing fluids present along grain boundaries. This was most likely followed by fluid exchange between the ore and its host rocks, both immediately after emplacement of the apatite-iron oxide body, and during subsequent phases of regional metamorphism and deformation.


Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.


Acknowledgments

We thank Dieter Rhede for support with the electron microprobe at the Geo-ForschungsZentrum. The staff at the Geological Survey of Sweden (SGU) mineral office in Malå is thanked for their kind and enthusiastic help during drill core studies and sampling campaigns. This study is part of a project on the apatite-iron oxide deposits of the Grängesberg district, funded by the SGU.

References cited

Allen, R.L., Lundström, I., Ripa, M., Simeonov, A., and Christofferson, H. (1996) Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Economic Geology, 91, 979–1008.10.2113/gsecongeo.91.6.979Search in Google Scholar

Andersson, U.B. (1997) The late Svecofennian, high-grade contact and regional metamorphism in southwestern Bergslagen (central southern Sweden). Geological Survey of Sweden, research report 03-819/93, 29 pp.Search in Google Scholar

Antignano, A., and Manning, C.E. (2008) Fluorapatite solubility in H2O and H2O-NaCl at 700 and 900 °C and 0.7 to 2.0 GPa. Chemical Geology, 251, 112–119.10.1016/j.chemgeo.2008.03.001Search in Google Scholar

Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S., and Ghazban, F. (2011) Significance of fluorapatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-fluorapatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chemical Geology, 281, 253–269.10.1016/j.chemgeo.2010.12.013Search in Google Scholar

Boyce, J.W., and Hodges, K.V. (2005) U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: Insights regarding the impact of recoil redistribution of radiogenic 4He on (U-Th)/He thermochronology. Chemical Geology, 219, 261–274.10.1016/j.chemgeo.2005.02.007Search in Google Scholar

Broman, C., Nyström, J.O., Henriquez, F., and Elfman, M. (1999) Fluid inclusions in magnetite-fluorapatite ore from a cooling magmatic system at El Laco, Chile. Geologiska Föreningens i Stockholm Förhandlingar, 121, 253–267.Search in Google Scholar

Budzyń, B., Harlov, D.E., Williams, M.L., Jercinovic, M.J. (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96, 1547–1567.10.2138/am.2011.3741Search in Google Scholar

Chen, H., Clark, A.H., and Kyser, T.K. (2010) The Marcona magnetite deposit, Ica, south-central Peru: a product of hydrous, iron-oxide-rich melts? Economic Geology, 105, 1441–1456.10.2113/econgeo.105.8.1441Search in Google Scholar

Chou, I.-M., and Eugster, H.P. (1977) Solubility of magnetite in supercritical chloride solutions. American Journal of Science, 277, 1296–1314.10.2475/ajs.277.10.1296Search in Google Scholar

Daliran, F. (1990) The magnetite–apatite deposit of Mishdovan, East-Central Iran. An alkali rhyolite hosted, “Kiruna-type” occurrence in the Infracambrian Bafg metallotect. Heidelberg Geowissenshaft Abhandlung, 37, 248.Search in Google Scholar

Daliran, F. (2002) Kiruna-type iron oxide–apatite ores and “apatitites” of the Bafq District, Iran, with an emphasis on the REE geochemistry of their apatites. In T.M. Porter, Ed., Hydrothermal Iron Oxide Copper–Gold and related deposits, 2, p. 303–320. PGC Publishing, Australia.Search in Google Scholar

Daliran, F., Stosch, H.G., Williams, P., Jamali, H., and Dorri, M.B. (2010) Early Cambrian iron oxide-apatite-REE (U) deposits of the Bafq District, East-Central Iran. In L. Coriveau and H. Mumin, Eds., Exploring for Iron Oxide Copper-Gold Deposits: Canada and Global Analogues, 20, p. 147–159. Geological Association of Canada, Short Course Notes.Search in Google Scholar

Dong, P. (2005) Halogen-element (F, Cl and Br) behavior in aptites, scapolite and sodalite: An experimental investigation with field applications. Unpublished Ph.D. thesis, University of Saskatchewan (free online access).Search in Google Scholar

Finger, F., Broska, I., Roberts, M.P., and Schermaier, A. (1998) Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist, 83, 248–258.10.2138/am-1998-3-408Search in Google Scholar

Förster, H.-J. (1998) The chemical composition of REE–Y–Th–U–rich accessory minerals from peraluminous granites of the Erzgebirge–Fichtelgebirge region, Germany. I. The monazite-(Ce)—brabantite solid solution series. American Mineralogist, 83, 259–272.10.2138/am-1998-3-409Search in Google Scholar

Förster, H., and Jafarzadeh, A. (1994) The Bafq mining district in central Iran—a highly mineralized infracambrian volcanic field. Economic Geology, 89, 1697–1721.10.2113/gsecongeo.89.8.1697Search in Google Scholar

Frietsch, R. (1978) On the magmatic origin of iron ores of the Kiruna type. Economic Geology, 73, 478–485.10.2113/gsecongeo.73.4.478Search in Google Scholar

Frietsch, R. (1984) Petrochemistry of the iron ore-bearing metavolcanics in Norrbotten county, northern Sweden. Sveriges Geologiska Undersökning, Serie C, no. 802, 62 pp.Search in Google Scholar

Frietsch, R., and Perdahl, J.-A. (1995) Rare earth elements in fluorapatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews, 9, 489–510.10.1016/0169-1368(94)00015-GSearch in Google Scholar

Geijer, P. (1910) Igneous rocks and iron ores of Kiirunavaara, Luossavaara and Tuolluvaara. Scientific and practical researches in Lapland arranged by Luossavaara–Kiirunavaara Aktiebolag. Ph.D. thesis, Uppsala University, Sweden.10.2113/gsecongeo.5.8.699Search in Google Scholar

Geijer, P. (1931) The iron ores of the Kiruna type: geographical distribution, geological characters, and origin. Sveriges Geologiska Undersökning, Serie C, No. 367, 39 pp.Search in Google Scholar

Geijer, P. (1967) Internal features of the apatite-bearing magnetite ores. Sveriges Geolo–giska Undersökning, Serie C, No. 624, 32 pp.Search in Google Scholar

Geijer, P., and Magnusson, N.H. (1944) De mellansvenska järnmalmernas geologi. Sveriges Geologiska Undersökning, Ca 35, 654 pp.Search in Google Scholar

Goldoff, B., Webster, J.D., and Harlov, D.E. (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mineralogist, 97, 1103–1115.10.2138/am.2012.3812Search in Google Scholar

Goodenough, K.M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., Deady, E.A., Sadeghi, M., Schiellerup, H., Müller, A., and others. (2016) Europe’s rare earth element resource potential: an overview of metallogenetic provinces and their geodynamic setting. Ore Geology Reviews, 72, 838–856.10.1016/j.oregeorev.2015.09.019Search in Google Scholar

Gratz, R., and Heinrich, W. (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the binary system CePO4-YPO4. American Mineralogist, 82, 772–780.10.2138/am-1997-7-816Search in Google Scholar

Hallberg, A., and Jonsson, E. (2006) Grängesberg—en järnmalmsuppgång och fall. Geologiskt Forum, 13, 52, 17–21.Search in Google Scholar

Hansen, E.C., and Harlov, D.E. (2007) Whole-rock, phosphate, and silicate compositional trends across an amphibolite- to granulite-facies transition, Tamil Nadu, India. Journal of Petrology, 48, 1641–1680.10.1093/petrology/egm031Search in Google Scholar

Harlov, D.E., and Förster, H.J. (2003) Fluid-induced nucleation of (Y+REE)-phosphate minerals within fluorapatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88, 1209–1229.10.2138/am-2003-8-905Search in Google Scholar

Harlov, D.E., Andersson, U.B., Förster, H.J., Nyström, J.O., Dulski, P., and Broman, C. (2002a) Fluorapatite-monazite relations in the Kiirunavaara magnetite-fluorapatite ore, northern Sweden. Chemical Geology, 191, 47–72.10.1016/S0009-2541(02)00148-1Search in Google Scholar

Harlov, D.E., Förster, H.J., and Nijland, T.G. (2002b) Fluid-induced nucleation of REE-phosphate minerals in fluorapatite: Nature and experiment. Part I. Chlorapatite. American Mineralogist, 87, 245–261.10.2138/am-2002-2-306Search in Google Scholar

Harlov, D.E., Wirth, R., and Förster, H.J. (2005) An experimental study of dissolution–reprecipitation in fluorapatite: Fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150, 268–286.10.1007/s00410-005-0017-8Search in Google Scholar

Harlov, D.E., Meighan, C., Kerr, I., and Samson, I.M. (2016) Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe-oxide-REE deposit, southeast Missouri, USA. Economic Geology, in press.10.2113/econgeo.111.8.1963Search in Google Scholar

Heinrich, W., Andrehs, G., and Franz, G. (1997) Monazite–xenotime miscibility gap thermometry: I. An empirical calibration. Journal of Metamorphic Geology, 15, 3–17.10.1111/j.1525-1314.1997.t01-1-00052.xSearch in Google Scholar

Henriquez, F., Naslund, H.R., Nyström, J.O., Vivallo, W., Aguirre, R., Dobbs, F.M., and Lledo, H. (2003) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile—a discussion. Economic Geology, 98, 1497–1500.10.2113/gsecongeo.98.7.1497Search in Google Scholar

Hermansson, T., Stephens, M.B., Corfu, F., Andersson, J., and Page, L. (2007) Penetrative ductile deformation and amphibolite-facies metamorphism prior to 1851 Ma in the western part of the Svecofennian orogen, Fennoscandian Shield. Precambrian Research, 153, 29–45.10.1016/j.precamres.2006.11.009Search in Google Scholar

Hitzman, M.W., Oreskes, N., and Einaudi, M.T. (1992) Geologic characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 58, 241–287.10.1016/0301-9268(92)90121-4Search in Google Scholar

Högdahl, K., Troll, V.R., Nilsson, K.P., and Jonsson, E. (2013) Structural evolution of the apatite-iron oxide deposit at Grängesberg, Bergslagen, Sweden. In E. Jonsson et al., Eds., Mineral Deposit Research for a High-Tech World, p. 1650–1653. Society for Geology Applied to Mineral Deposits.Search in Google Scholar

Islamovic, M., Åkerhammar, P., Norlin, L., Lundberg, C., and Baumgartner, A. (2015) Bergverksstatistik 2014 (Statistics of the Swedish mining industry 2014). Sveriges geologiska undersökning, periodiska publikationer 2015:1, 71 pp.Search in Google Scholar

Jami, M., Dunlop, A.C., and Cohen, D.R. (2007) Fluid inclusion and stable isotope study of the Esfordi fluorapatite-magnetite deposit, Central Iran. Economic Geology, 102, 1111–1125.10.2113/gsecongeo.102.6.1111Search in Google Scholar

Janots, E., Brunet, F., Goffé, B., Poinssot, C., Burchard, M., and Cemic, L. (2007) Thermochemistry of monazite-(La) and dissakisite-(La): Implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology, 154, 1–14.10.1007/s00410-006-0176-2Search in Google Scholar

Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.O., and Spandler, C. (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610 °C. Journal of Metamorphic Geology, 26, 509–526.10.1111/j.1525-1314.2008.00774.xSearch in Google Scholar

Jarosewich, E., and Boatner, L.A. (1991) Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter, 15, 397–399.10.1111/j.1751-908X.1991.tb00115.xSearch in Google Scholar

Jarosewich, E., Nelen, J.A., and Norberg, J.A. (1980) Reference samples for electron microprobe analysis. Geostandards Newsletter, 4, 43–47.10.1111/j.1751-908X.1980.tb00273.xSearch in Google Scholar

Johansson, H. (1910) Die eisenerzführende Formation in der Gegend von Grängesberg. Geologiska Föreningens i Stockholm Förhandlingar, 32, 239–410.10.1080/11035891009443105Search in Google Scholar

Jonsson, E., Nilsson, K.P., Hallberg, A, and Högdahl, K. (2010a) The Palaeoproterozoic fluorapatite-iron oxide deposits of the Grängesberg area: Kiruna-type deposits in central Sweden. In H.A. Nakrem, A.O. Harstad, and G. Haukdal, Eds., NGF abstracts and proceedings, 1, 88–89.Search in Google Scholar

Jonsson, E., Persson Nilsson, K., Högdahl, K., Troll, V.R., and Hallberg, A. (2010b) REE distribution and mineralogy in a Palaeoproterozoic apatite-iron oxide deposit: Grängesberg, Bergslagen, Sweden. Acta Mineralogica-Petrographica abstract series, 6, 234.Search in Google Scholar

Jonsson, E., Persson Nilsson, K., Hallberg, A., Högdahl, K., Troll, V.R., Weis, F., and Harris, C. (2011) Oxygen isotopes and geochemistry of Palaeoproterozoic Kiruna-type deposits in the Bergslagen province, Sweden. 11th Biennial SGA meeting, Antofagasta, Chile. Abstract vol., 494–496.Search in Google Scholar

Jonsson, E., Troll, V.R., Högdahl, K., Harris, C., Weis, F., Nilsson, K.P., and Skelton, A. (2013) Magmatic origin of giant central Swedish “Kiruna-type” apatite-iron oxide ores. Scientific Reports 3, 1644, 1–8.Search in Google Scholar

Kerr, I.D. (1998) Mineralogy, chemistry, and hydrothermal evolution of the Pea Ridge Fe-oxide-REE deposit, Missouri, USA. Masters thesis, University of Windsor, Windsor, Ontario, Canada, 113 pp.Search in Google Scholar

Kisvarsanyi, E.B., and Kisvarsanyi, G., (1989) Alkaline granite ring complexes and metallogeny in the middle Proterozoic St. Francois Terrane, southeastern Missouri, USA. In C.F. Gower, T. River, and B. Ryan, Eds., Mid-Proterozoic Laurentia-Baltica, Geological Association of Canada, Special Paper 38, 433–446.Search in Google Scholar

Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Lundstrom, C., Bindeman, I., and Munizaga, R. (2015) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology, 43, 591–594.10.1130/G36650.1Search in Google Scholar

Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., and others. (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Canadian Mineralogist, 35, 219–246.Search in Google Scholar

Lecumberri-Sanchez, P., Steele-MacInnis, M., and Bodnar, R.J. (2015) Synthetic fluid inclusions XIX. Experimental determination of the vapor-saturated liquidus of the system H2O-NaCl-FeCl2. Geochimica et Cosmochimica Acta, 148, 34–49.10.1016/j.gca.2014.08.015Search in Google Scholar

Lledó, L.H. (2005) Experimental studies on the origin of iron deposits and mineralization of Sierra La Bandera, Chile. Unpublished Ph.D. thesis, Binghamton, New York, State University of New York, 200 p.Search in Google Scholar

Looström, R. (1929) Likheter mellan Lapplands- och Grängesbergsmalmerna. Geologiska Föreningens i Stockholm Förhandlingar, 51, 303–308.Search in Google Scholar

Looström, R. (1939) Lönnfallet. Southernmost part of the Export field at Grängesberg. Sveriges Geologiska Undersökning Serie C, 428, 30 pp.Search in Google Scholar

Lupulescu, M.V., and Pyle, J.M. (2005) The Fe-P-REE deposit at Mineville, Essex Co., NY; manifestations of Precambrian and Mesozoic fluid infiltration events. Anonymous. Abstracts with Programs, Geological Society of America, 37, 4.Search in Google Scholar

Lupulescu, M.V., and Pyle, J.M. (2008) Mining history, mineralogy and origin of the gneiss (granite)-hosted Fe-PREE and Fe oxide and gabbro-hosted Ti-Fe deposits from the Mineville-Port Henry region, Essex County, NY. Guidebook—New York State Geological Association, Meeting, 80, pp. 117–129.Search in Google Scholar

Magnusson, N.H. (1938) Neue Untersuchungen innerhalb des Grängesberg-Feldes. Sveriges Geologiska Undersökning Serie C, 418, 44 pp.Search in Google Scholar

Magnusson, N.H. (1970) The origin of the iron ores in central Sweden and the history of their alterations, vols. I-II. Sveriges Geologiska Undersökning Serie C, 643, 127+364 pp.Search in Google Scholar

Marikos, M.A., Nuelle, L.M., and Seeger, C.M. (1989) Geology of the Pea Ridge Mine. In M.A. Marikos, L.M. Nuelle, and C.M. Seeger, Eds., Olympic Dam-type Deposits and Geology of Middle Proterozoic Rocks in the St. Francois Mountains Terrane, Missouri. Society of Economic Geologists, 4, 41–54.Search in Google Scholar

McKeown, F.A., and Klemic, H. (1956) Rare-earth-bearing fluorapatite at Mineville, Essex County, New York. U.S. Geological Survey Bulletin, 9–23.Search in Google Scholar

Mücke, A., and Younessi, R. (1994) Magnetite-fluorapatite deposits (Kiruna-type) along the Sanandaj-Sirjan zone and in the Bafq area, Iran, associated with ultramafic and calcalkaline rocks and carbonatites. Mineralogy and Petrology, 50, 219–244.10.1007/BF01164607Search in Google Scholar

Naranjo, J.A., Henriquez, F., and Nyström, J.O. (2010) Subvolcanic contact metasomatism at El Laco volcanic complex, central Andes. Andean Geology, 37, 110–120.10.4067/S0718-71062010000100005Search in Google Scholar

Naslund, H.R., Aguirre, R., Dobbs, F.M., Henriquez, F., and Nyström, J.O. (2000) The origin, emplacement, and eruption of ore magmas. IX Congreso Geologico Chileno, Actas, 2, 135–139.Search in Google Scholar

Naslund, H.R., Henriquez, F., Nyström, J.O., Vivallo, W., and Dobbs, F.M. (2002) Magmatic iron ores and associated mineralization: examples from the Chilean High Andes and Coastal Cordillera. In T.M. Porter, Ed., Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, 2, pp. 207–226. PGC Publishing, Adelaide.Search in Google Scholar

Nyström, J.O., and Henriquez, F. (1989) Dendritic magnetite and miniature diapirs-like concentrations of apatite: Two magmatic features of the Kiirunavaara iron ore. Geologiska Föreningens i Stockholm Förhandlingar, 111, 53–64.10.1080/11035898909454759Search in Google Scholar

Nyström, J.O., and Henriquez, F. (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry. Economic Geology, 89, 820–839.10.2113/gsecongeo.89.4.820Search in Google Scholar

Nyström, J.O., Billström, K., Henriquez, F., Fallick, A.E., and Naslund, H.R. (2008) Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 130, 177–188.Search in Google Scholar

Pan, Y., and Dong, P. (1999) The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15, 177–242.10.1016/S0169-1368(99)00022-0Search in Google Scholar

Pan, Y., and Fleet M.E. (2002) Composition of the fluorapatite-group minerals: Substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48, 13–49.10.2138/rmg.2002.48.2Search in Google Scholar

Pan, Y., Fleet, M.E., and Macrae, N.D. (1993) Oriented monazite inclusions in apatite porphyroblasts from the Hemlo gold deposit, Ontario, Canada. Mineralogical Magazine, 57, 697–707.10.1180/minmag.1993.057.389.14Search in Google Scholar

Persson, K.P., Högdahl, K., Jonsson, E., Troll, V.R., Weis, F., Persson, L., Majka, J., and Skelton, A. (2013) The Grängesberg apatite-iron oxide deposit. Sveriges Geologiska Undersökning report, projects 35189 and 60-1629/2008, 45 pp.Search in Google Scholar

Pouchou, J.L., and Pichoir, F. (1985) “PAP” (φ-ρ-Z) procedure for improved quantitative microanalysis. In J.T. Armstrong, Ed., Microbeam Analysis, p. 104–106. San Francisco Press.Search in Google Scholar

Putnis, A. (2009) Mineral replacement reactions. Reviews in Mineralogy and Geochemistry, 70, 87–124.10.1515/9781501508462-005Search in Google Scholar

Putnis, A., and Austrheim, H. (2012) Mechanisms of metasomatism and metamorphism on the local mineral scale: The role of dissolution-reprecipitation during mineral re-equilibration. In D. Harlov and H. Austrheim, Eds., Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes, p. 141–170. Spinger, Heidelberg.10.1007/978-3-642-28394-9_5Search in Google Scholar

Pyle, J.M., Spear, F.S., and Wark, D.A. (2002) Electron microprobe analyses of REE in fluorapatite, monazite and xenotime: Protocols and pitfalls. Reviews in Mineralogy and Geochemistry, 48, 337–362.10.2138/rmg.2002.48.8Search in Google Scholar

Sidder, G.B., Day, W.C., Nuelle, L.M., Seeger, C.M., and Kisvarsanyi, E.B. (1993) Mineralogic and fluid-inclusion studies of the Pea Ridge iron-rare-earth-element deposit, Southeast Missouri. U.S. Geological Survey Bulletin, 205–216.Search in Google Scholar

Stephens, M.B., Ripa, M., Lundström, I., Persson, L., Bergman, T., Ahl, M., Wahlgren, C.-H., Persson, P.-O., and Wickström, L. (2009) Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden. Sveriges Geologiska Undersökning Ba, 58, 1–259.Search in Google Scholar

Stormer, J.C. Jr., Pierson, M.J., and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion of fluorapatite during electron microprobe analyses. American Mineralogist, 78, 641–648.Search in Google Scholar

Stosch, H.-G., Romer, R.L., Daliran, F., and Rhede, D. (2011) Uranium-lead ages of apatite from iron oxide ores of the Bafq District. East-Central Iran. Mineralium Deposita, 46, 9–21.10.1007/s00126-010-0309-4Search in Google Scholar

Spear, F.S. (2010) Monazite–allanite phase relations in metapelites. Chemical Geology, 279, 55–62.10.1016/j.chemgeo.2010.10.004Search in Google Scholar

Taghipour, S., Kananian, A., Harlov, D., and Oberhänsli, R. (2015) Kiruna-type iron oxide-apatite deposits, Bafq district, central Iran: Fluid-aided genesis of fluorapatitemonazite-xenotime assemblages. Canadian Mineralogist, 53, 1–17.10.3749/canmin.4344Search in Google Scholar

Tegengren, F. (1924) Sveriges ädlare malmer och bergverk. Sveriges Geologiska Undersökning Ca 17, 406 pp.Search in Google Scholar

Torab, F.M., and Lehmann, B. (2007) Magnetite-fluorapatite deposits of the Bafq district, Central Iran: fluorapatite geochemistry and monazite geochronology. Mineralogical Magazine, 71, 347–363.10.1180/minmag.2007.071.3.347Search in Google Scholar

Treloar, P.J., and Colley, H. (1996) Variations in F and Cl contents in apatites from magnetite-apatite ores in northern Chile, and their ore-genetic implications. Mineralogical Magazine, 60, 285–301.10.1180/minmag.1996.060.399.04Search in Google Scholar

Tropper, P., Manning, C.E., and Harlov, D.E. (2011) Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O-NaCl at 800 °C and 1 GPa: Implications for REE and Y transport during high-grade metamorphism. Chemical Geology, 282, 58–66.10.1016/j.chemgeo.2011.01.009Search in Google Scholar

Tropper, P., Manning, C.E., and Harlov, D.E. (2013) Experimental determination of CePO4 and YPO4 solubilities in H2O-NaF at 800°C and 1 GPa: Implications for rare earth element transport in high-grade metamorphic fluids. GeoFluids, 13, 372–380.10.1111/gfl.12031Search in Google Scholar

Weis, F., Troll, V.R., Jonsson, E., Högdahl, K., Barker, A., Harris, C., Millet, M.-A., and Nilsson, K.P. (2013) Iron and oxygen isotope characteristics of apatite-iron-oxide ores from central Sweden. In E. Jonsson et al., Eds., Mineral Deposit Research for a High-Tech World, p. 1675–1678. Society for Geology Applied to Mineral Deposits.Search in Google Scholar

Whitten, C.W., and Yancey R.J. (1990) Characterization of the Rare-Earth Mineralogy at the Pea Ridge Deposit, Missouri. Report of Investigations 9331. U.S. Department of the Interior, Bureau of Mines, 9 pp.Search in Google Scholar

Williams, P.J., Barton, M.D., Johnson, D.A., Fontboté, L., De Haller, A., Mark, G., Oliver, N.H.S., and Marschik, R. (2005) Iron oxide copper-gold deposits: geology, spacetime distribution, and possible modes of origin. Economic Geology, 100, 371–405.Search in Google Scholar

Young, E.J., Myers, A.T., Munson, E.L., and Conklin, N.M. (1969) Mineralogy and chemistry of fluorapatite from Cerro de Mercado, Durango, Mexico. USGS Professional Paper 650-D, D84–D93.Search in Google Scholar

Received: 2015-12-15
Accepted: 2016-3-27
Published Online: 2016-7-30
Published in Print: 2016-8-1

© 2016 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Highlights and Breakthroughs
  2. A new approach to the ionic model
  3. Highlights and Breakthroughs
  4. Na-P concentrations in high-pressure garnets: A potentially rich, but risky P-T repository
  5. Special Collection: Perspectives on Origins and Evolution of Crustal Magmas
  6. Crystal accumulation in a tilted arc batholith
  7. Research Article
  8. A tale of two garnets: The role of solid solution in the development toward a modern mineralogy
  9. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  10. The crystal structure of svabite, Ca5(AsO4)3F, an arsenate member of the apatite supergroup
  11. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  12. From phosphates to silicates and back: an experimental study on the transport and storage of phosphorus in eclogites during uplift and exhumation
  13. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  14. Fluorapatite-monazite-allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden
  15. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  16. Solid solution in the apatite OH-Cl binary system: Compositional dependence of solid-solution mechanisms in calcium phosphate apatites along the Cl-OH binary
  17. Special Collection: Advances in Ultrahigh-Pressure Metamorphism
  18. Dissolution-reprecipitation metasomatism and growth of zircon within phosphatic garnet in metapelites from western Massachusetts
  19. Special Collection: New Advances In Subduction Zone Magma Genesis
  20. Origin and petrogenetic implications of anomalous olivine from a Cascade forearc basalt
  21. Versatile Monazite: Resolving Geological Records and Solving Challenges in Materials Science
  22. Monazite age constraints on the tectono-thermal evolution of the central Appalachian Piedmont
  23. Research Article
  24. A new EPMA method for fast trace element analysis in simple matrices
  25. Research Article
  26. Location and stability of europium in calcium sulfate and its relevance to rare earth recovery from phosphogypsum waste
  27. Research Article
  28. A preliminary valence-multipole potential energy model: Al-Si-H-O system
  29. Research Article
  30. Optical phonons, OH vibrations, and structural modifications of phlogopite at high temperatures: An in-situ infrared spectroscopic study
  31. Research Article
  32. Redox states of uranium in samples of microlite and monazite
  33. Research Article
  34. Effects of differential stress on the structure and Raman spectra of calcite from first-principles calculations
  35. Research Article
  36. Oxygen diffusion and exchange in dolomite rock at 700 °C, 100 MPa
  37. Research Article
  38. Fluid inclusion examination of the transition from magmatic to hydrothermal conditions in pegmatites from San Diego County, California
  39. Letter
  40. Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy
  41. New Mineral Names
  42. New Mineral Names
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2016-5655/html
Scroll to top button