Home Fayalite oxidation processes in Obsidian Cliffs rhyolite flow, Oregon
Article
Licensed
Unlicensed Requires Authentication

Fayalite oxidation processes in Obsidian Cliffs rhyolite flow, Oregon

  • Audrey M. Martin EMAIL logo , Etienne Médard , Bertrand Devouard , Lindsay P. Keller , Kevin Righter and Jean-Luc Devidal
Published/Copyright: May 12, 2015
Become an author with De Gruyter Brill

Abstract

This study investigates the oxidation of fayalite Fe22+SiO4 that is present in lithophysae from a rhyolite flow (Obsidian Cliffs, Oregon). Textural, chemical, and structural analyses of the successive oxidation zones are used to constrain: (1) the oxidation processes of olivine, and (2) the role of temperature, chemical diffusion, and meteoric infiltration. Petrologic analyses and thermodynamic modeling show that the rhyolite flow emplaced at 800-950 °C. Fayalite-bearing lithophysae formed only in the core of the lava flow. Variations in the gas composition inside the lithophysae induced the oxidation of fayalite to a laihunite-1M zone Fe12+Fe23+1(SiO4)2. This zone is made of nano-lamellae of amorphous silica SiO2 and laihunite-3M Fe2+1.6Fe3+1.60.8(SiO4)2+ hematite Fe2O3. It probably formed by a nucleation and growth process in the fayalite fractures and defects and at fayalite crystal edges. The laihunite-1M zone then oxidized into an “oxyfayalite” zone with the composition Fe2+0.52Fe3+2.321.16(SiO4)2. This second oxidation zone is made of lamellae of amorphous silica SiO2 and hematite Fe2O3, with a possible small amount of ferrosilite Fe2+SiO3. A third and outer zone, composed exclusively of hematite, is also present. The successive oxidation zones suggest that there may be a mineral in the olivine group with higher Fe3+ content than laihunite-1M. The transformation of laihunite-1M to this “oxyfayalite” phase could occur by a reaction such as

This would imply that Fe3+ can also be incorporated in the M1 site of olivine.

Received: 2014-5-8
Accepted: 2014-10-29
Published Online: 2015-5-12
Published in Print: 2015-5-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Highlights and Breakthroughs. Reaction pathways toward the formation of dolomite
  2. Highlights and Breakthroughs. Zircon dissolution and growth during metamorphism
  3. Review Paper. Linear partitioning in binary solutions: A review with a novel partitioning array
  4. Presidential Address. The many facets of apatite
  5. Thermal expansion of F-Cl apatite crystalline solutions
  6. Pieczkaite, ideally Mn5(PO4)3Cl, a new apatite-supergroup mineral from Cross Lake, Manitoba, Canada: Description and crystal structure
  7. First-principles prediction of pressure-enhanced defect segregation and migration at MgO grain boundaries
  8. Optical properties of siderite (FeCO3) across the spin transition: Crossover to iron-rich carbonates in the lower mantle
  9. Calculation of the energetics of water incorporation in majorite garnet
  10. Influence of hydration on 23Na, 27Al, and 29Si MAS-NMR spectra of sodium saponites and sodium micas
  11. Quantification of water in majoritic garnet
  12. How to make a planet: An introduction
  13. Modeling siderophile elements during core formation and accretion, and the role of the deep mantle and volatiles
  14. Optical constants of synthetic potassium, sodium, and hydronium jarosite
  15. A photoluminescence study of REE3+ emissions in radiation-damaged zircon
  16. Hydrothermal chloritization processes from biotite in the Toki granite, Central Japan: Temporal variations of of the compositions of hydrothermal fluids associated with chloritization
  17. Fayalite oxidation processes in Obsidian Cliffs rhyolite flow, Oregon
  18. Effect of pores and grain size on the elastic and piezoelectric properties of quartz-based materials
  19. A route for the direct crystallization of dolomite
  20. Very large differences in intramolecular D-H partitioning in hydrated silicate melts synthesized at upper mantle pressures and temperatures
  21. Temperature dependence of crystal structure of CaGeO3 high-pressure perovskite phase and experimental determination of its Debye temperatures studied by low- and hightemperature single-crystal X-ray diffraction
  22. Insights into the structure of mixed CO2/CH4 in gas hydrates
  23. Hydrous species in feldspars: A reassessment based on FTIR and SIMS
  24. An insight into the inverse transformation of realgar altered by light
  25. First evidence of CaCO3-III and CaCO3-IIIb high-pressure polymorphs of calcite: Authigenically formed in near surface sediments
  26. Surface transformations of platinum grains from Fifield, New South Wales, Australia
  27. Cation exchange capacity and water content of opal in sedimentary basins: Example from the Monterey Formation, California
  28. Impact of preparation method and chemical composition on physicochemical and photocatalytic properties of nano-dimensional magnetite-type materials
  29. Transition metal cation site preferences in forsterite (Mg2SiO4) determined from paramagnetically shifted NMR resonances
  30. Review. Routine characterization and interpretation of complex alkali feldspar intergrowths
  31. Letter. Experimental confirmation of high-temperature silicate liquid immiscibility in multicomponent ferrobasaltic systems
  32. Letter. Discovery of stishovite in Apollo 15299 sample
  33. Presentation of the 2014 Roebling Medal of the Mineralogical Society of America to Bernard J. Wood
  34. Acceptance of the 2014 Roebling Medal of the Mineralogical Society of America
  35. Presentation of the Dana Medal of the Mineralogical Society of America for 2015 to Marc Hirschmann
  36. Acceptance of the Dana Medal of the Mineralogical Society of America for 2015
  37. Presentation of the Mineralogical Society of America Award for 2014 to Fang-Zhen Teng
  38. Acceptance of the Mineralogical Society of America Award for 2014
  39. New Mineral Names
Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2015-5042/html?lang=en
Scroll to top button