Home Determination of the molar absorption coefficient for the infrared absorption band of CO2in rhyolitic glasses
Article
Licensed
Unlicensed Requires Authentication

Determination of the molar absorption coefficient for the infrared absorption band of CO2in rhyolitic glasses

  • Harald Behrens EMAIL logo , Nathalie Tamic and Francois Holtz
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

A new calibration was performed for the molecular CO2 band at 2349 cm-1 in the infrared absorption spectra of rhyolitic glasses. Glasses with varying amounts of CO2 (730-3900 ppm by weight) and H2O (0.5-7.0 wt%) were synthesized in an internally heated pressure vessel at 200-800 MPa and 1100 and 1200 °C. The CO2 content of the glasses was measured by coulometric CO2-titration after thermal extraction at 1200 °C. It is shown that the entire CO2 content cannot be extracted from a rhyolitic glass at this temperature. Using the Lambert-Beer law, and taking into account the residual CO2 still present in the glasses after extraction, we have calculated a linear molar absorption coefficient of 1214 ± 78 L⋅cm-1/mol for the band at 2349 cm-1. Strictly, this value is a practical absorption coefficient because the IR band intensity is related to the total CO2 content and not to the molecular CO2 content. However, no direct evidence for other carbon species such as carbonate groups is found in the IR spectra. Hence, we suggest that the concentration of carbonate in the studied metaluminous rhyolite is negligible and the derived value is close to the real absorption coefficient for molecular CO2. The absorption coefficient does not vary noticeably with changing water content of the glasses. With the new calibration, CO2 concentrations in rhyolitic glasses are 13% higher than data based on the previous calibration of Blank (1993) for water-poor glasses.

Received: 2003-2-17
Accepted: 2003-10-14
Published Online: 2015-3-28
Published in Print: 2004-2-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Composition and I4/m-P42/n phase transition in scapolite solid solutions
  2. Synthesis and characterization of K2Ca5(SO4)6·H2O, the equivalent of görgeyite, a rare evaporite mineral
  3. Phase relations in the system Fe-FeSi at 21 GPa
  4. The speciation of dissolved H2O in dacitic melt
  5. Nucleation and growth kinetics of the α-β transformation in Mg2SiO4determined by in situ synchrotron powder X-ray diffraction
  6. Experimental determination of siderite stability and application to Martian Meteorite ALH84001
  7. Determination of the molar absorption coefficient for the infrared absorption band of CO2in rhyolitic glasses
  8. Crystallographic properties of the calcium phosphate mineral, brushite, by means of First Principles calculations
  9. The crystal structure of jonesite, Ba2(K,Na)[Ti2(Si5Al)O18(H2O)](H2O)n: A first example of titanosilicate with porous double layers
  10. Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study
  11. Synthesis of beryllian sapphirine in the system MgO-BeO-Al2O3-SiO2-H2O and comparison with naturally occurring beryllian sapphirine and khmaralite, Part 2: A chemographic study of Be content as a function of P, T, assemblage and FeMg–1exchange
  12. Spriggite, Pb3[(UO2)6O8(OH)2](H2O)3, a new mineral with β-U3O8–type sheets: Description and crystal structure
  13. Sieve-textured plagioclase in dacitic magma: Interference imaging results
  14. Single crystal raman spectroscopy of cerussite
  15. Sodalite: High-temperature structures obtained from synchrotron radiation and Rietveld refinements
  16. The structure of metahohmannite, Fe3+2[O(SO4)2]⋅4H2O, by in situ synchrotron powder diffraction
  17. High-pressure synchrotron X-ray diffraction study of spessartine and uvarovite: A comparison between different equation of state models
  18. Quantum calculations of the electronic structure and NMR quadrupolar interaction parameters for tugtupite
  19. Identification of pyrite valence band contributions using synchrotron-excited X-ray photoelectron spectroscopy
  20. Micro-Raman studies of gypsum in the temperature range between 9 K and 373 K
  21. A new rare earth disilicate (REE2Si2O7; REE = Dy, Tm, Lu; type-L): Evidence for nonquenchable 10 GPa polymorph with silicon in fivefold trigonal bipyramidal coordination?
  22. Structural variations in the brownmillerite series Ca2(Fe2–xAlx)O5: Single-crystal X-ray diffraction at 25 °C and high-temperature X-ray powder diffraction (25 °C ≤ T ≤ 1000 °C)
  23. Peculiarity and defect structure of the natural and synthetic zeolite mordenite: A single-crystal X-ray study
  24. Model independent phase equilibrium constraints on the ferrosilite activity in the binary Fe-Mg orthopyroxene solid solution
  25. Microstructural study of synthetic sintered diamond and comparison with carbonado, a natural polycrystalline diamond
  26. Structural and chemical response to varying [4]B content in zoned Fe-bearing olenite from Koralpe, Austria
  27. A new dense silica polymorph: A possible link between tetrahedrally and octahedrally coordinated silica
  28. Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2004-2-307/html
Scroll to top button