Home Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3
Article
Licensed
Unlicensed Requires Authentication

Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3

  • Atsushi Kyono EMAIL logo and Mitsuyoshi Kimata
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

Structural refinements of single crystal X-ray diffraction data for synthetic (Sb,Bi)2S3 solid solutions revealed structural variations in the stibnite (Sb2S3)-bismuthinite (Bi2S3) series. Coordination environments of the M cations are (3 + 4)-fold for the M1 site and (5 + 2)-fold for the M2 site. For the M1 and M2 polyhedra, the short M-S bond lengths increase constantly with increasing Bi concentration, whereas the long M-S bond lengths decrease continuously. The S-M-S interatomic angles interposing lone-pair electrons increase continuously from stibnite to bismuthinite. Stereochemical activity of the lone-pair electrons induces configurational changes of ligands around the M cations from elongated ellipsoidal coordinations to spheroidal ones. Substitution of Bi3+ for Sb3+ in the solid solution expands the basic building block, which causes linear increase of the b lattice parameter with slight positive deviation from Vegardʼs law. This feature is ascribed to order-disorder with concentration of Sb at the M1 site and Bi at the smaller M2 site. Furthermore, increased Bi content engenders both expansion of the basic building block and contraction of intervals between these blocks, contributing to smaller changes in the a and c lattice parameters than in the b lattice parameter. The M2 polyhedra expand relative to the M1 polyhedra with increasing Bi content because the large Bi cation is concentrated at the smaller M2 site. One striking characteristic of (Sb,Bi)2S3 crystal structures is that geometries of central M cation and ligand atoms can be adapted flexibly to transformation of stereochemical activity from 5s2 lone-pair electrons to Bi 6s2 lone-pair electrons by altering the centroid-central atom distance and by changing angles of the centroid-central atom to the a axis.

Received: 2003-3-11
Accepted: 2003-12-7
Published Online: 2015-3-28
Published in Print: 2004-7-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform
  2. Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3
  3. Hydrogen solubility and speciation in natural, gem-quality chromian diopside
  4. Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite
  5. Impactite from Henbury, Australia
  6. Neutron and synchrotron X-ray diffraction study of the structures and dehydration behaviors of ramsdellite and “groutellite”
  7. Hydrothermal synthesis and crystal chemistry of the new strontium uranyl selenites, Sr[(UO2)3(SeO3)2O2]⋅4H2O and Sr[UO2(SeO3)2]
  8. Study of cation order-disorder in MgAl2O4spinel by in situ neutron diffraction up to 1600 K and 3.2 GPa
  9. Magnetic granulometry from equilibrium magnetization measurements: Mineral magnetometry of superparamagnetic particles and application to synthetic ferrihydrites
  10. Hydroxide in kyanite: A quantitative determination of the absolute amount and calibration of the IR spectrum
  11. Analysis of uranyl-bearing phases by EXAFS spectroscopy: Interferences, multiple scattering, accuracy of structural parameters, and spectral differences
  12. X-ray diffraction evidence for a monoclinic form of stibnite, Sb2S3, below 290 K
  13. Sulfur species at chalcopyrite (CuFeS2) fracture surfaces
  14. Dehydration and rehydration process in boggsite: An in situ X-ray single-crystal study
  15. Empressite, AgTe, from the Empress-Josephine mine, Colorado, U.S.A.: Composition, physical properties, and determination of the crystal structure
  16. Correlation of pH-dependent surface interaction forces to amino acid adsorption: Implications for the origin of life
  17. A near-infrared spectroscopic study of hydroxyl in natural chondrodite
  18. High-pressure elasticity of a natural magnetite crystal
  19. Isotopic and chemical alteration of zircon by metamorphic fluids: U-Pb age depth-profiling of zircon crystals from Barrowʼs garnet zone, northeast Scotland
  20. A novel approach to determine high-pressure high-temperature fluid and melt compositions using diamond-trap experiments
  21. Lindbergite, a new Mn oxalate dihydrate from Boca Rica mine, Galiléia, Minas Gerais, Brazil, and other occurrences
  22. Pyrophyllite dehydroxylation process by First Principles calculations
  23. Plagioclase from planetary basalts: Chemical signatures that reflect planetary volatile budgets, oxygen fugacity, and styles of igneous differentiation
  24. The structure of the manganese oxide on the sheath of the bacterium Leptothrix discophora: An XAFS study
  25. An X-ray Rietveld study of piemontite on the join Ca2Al3Si3O12(OH)–Ca2Mn33+Si3O12(OH) formed by hydrothermal synthesis
  26. Raman spectroscopy of basic copper(II) and some complex copper(II) sulfate minerals: Implications for hydrogen bonding
  27. Incorporation of sodium into the chlorite structure: the crystal structure of glagolevite, Na(Mg,Al)6[Si3AlO10](OH,O)8
  28. Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite ↔ dolomite reaction boundary
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2004-0702/html
Scroll to top button