Abstract
Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (β2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Structural systematics of hydrous ringwoodite and water in earth’s interior
- Compressibility of phase Egg AlSiO3OH: Equation of state and role of water at high pressure
- Synchrotron infrared spectroscopy of OH-chondrodite and OH-clinohumite at high pressure
- Structural deformation mechanisms of zeolites under pressure
- Variation of hydrogen bonded O···O distances in goethite at high pressure
- Pressure-controlled polytypism in hydrous layered materials
- OH– in synthetic and natural coesite
- Pressure-induced phase transformation of kalicinite (KHCO3) at 2.8 GPa and local structural changes around hydrogen atoms
- Potential docking sites and positions of hydrogen in high-pressure silicates
- Contrasting bonding behavior of two hydroxyl-bearing metamorphic minerals under pressure: Clinozoisite and topaz
- Experimental investigation of crystallization kinetics in a haplogranite system
- Assessment of cation substitutions along the gallium and fluorine analogue of the tremolite-glaucophane join
- Experimental hydrothermal alteration of partially metamict zircon
- On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion
- Ordering in spinels—A Monte Carlo study
- Single-crystal in situ high-temperature structural investigation of the I1̅ –I2/c phase transition in Ca0.2Sr0.8Al2Si2O8 feldspar
- New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho
- Fe and Ni impurities in synthetic diamond
- Phase transformations and reaction kinetics during the temperature-induced oxidation of natural olivine
- Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars
- Oxygen isotopic composition of nano-scale uraninite at the Oklo-Okélobondo natural fission reactors, Gabon
- Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: Origin and evolution of garnet exsolution in clinopyroxene
- Letters. An assessment of nuclear microprobe analyses of B in silicate minerals
- Incommensurate phase in the kosmochlor-diopside join: A new polymorph of clinopyroxene
- Elastic properties of hydrous ringwoodite
- Thermochemistry of guest-free melanophlogite
- A simple model for the pressure preservation index of inclusions in diamond
Articles in the same Issue
- Structural systematics of hydrous ringwoodite and water in earth’s interior
- Compressibility of phase Egg AlSiO3OH: Equation of state and role of water at high pressure
- Synchrotron infrared spectroscopy of OH-chondrodite and OH-clinohumite at high pressure
- Structural deformation mechanisms of zeolites under pressure
- Variation of hydrogen bonded O···O distances in goethite at high pressure
- Pressure-controlled polytypism in hydrous layered materials
- OH– in synthetic and natural coesite
- Pressure-induced phase transformation of kalicinite (KHCO3) at 2.8 GPa and local structural changes around hydrogen atoms
- Potential docking sites and positions of hydrogen in high-pressure silicates
- Contrasting bonding behavior of two hydroxyl-bearing metamorphic minerals under pressure: Clinozoisite and topaz
- Experimental investigation of crystallization kinetics in a haplogranite system
- Assessment of cation substitutions along the gallium and fluorine analogue of the tremolite-glaucophane join
- Experimental hydrothermal alteration of partially metamict zircon
- On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion
- Ordering in spinels—A Monte Carlo study
- Single-crystal in situ high-temperature structural investigation of the I1̅ –I2/c phase transition in Ca0.2Sr0.8Al2Si2O8 feldspar
- New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho
- Fe and Ni impurities in synthetic diamond
- Phase transformations and reaction kinetics during the temperature-induced oxidation of natural olivine
- Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars
- Oxygen isotopic composition of nano-scale uraninite at the Oklo-Okélobondo natural fission reactors, Gabon
- Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: Origin and evolution of garnet exsolution in clinopyroxene
- Letters. An assessment of nuclear microprobe analyses of B in silicate minerals
- Incommensurate phase in the kosmochlor-diopside join: A new polymorph of clinopyroxene
- Elastic properties of hydrous ringwoodite
- Thermochemistry of guest-free melanophlogite
- A simple model for the pressure preservation index of inclusions in diamond