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Abstract. The history of crystallography has been as-
sessed in the context of the emergence and spread of the
molecular theory. The present paper focuses on the 19th
century, which saw the emancipation of crystallography as
a science sui generis. Around 1800, Laplace’s molecular-
ism called the tune in the various sciences (physics, chem-
istry, biology, crystallography). In crystallography, two
schools opposed each other: that of Weiss, in Berlin, and
that of Haiiy, in Paris. Symmetry proved essential. It will
be shown how the lattice theory arose in an essentially
molecular framework and how group theory imposed it-
self. The salt hydrates suggested the idea of (two or more)
superimposed molecular lattices. Gradually it became clear
that an ultimate lattice theory ought to be atomic. The
experiments of Laue, Friedrich and Knipping confirmed
that atomic basis.

1. Introduction

The term ‘crystallography’ was introduced, in 1723, by Mo-
ritz Anton Cappeller (1685-1769) (Lima-de-Faria, 1990).
From about 1800 crystallography definitely branched off
from mineralogy. It is noteworthy that René-Just Haiiy’s
first manual, published in 1801, was entitled Traité de
Minéralogie. It was followed, in 1822, by a Traité de
Cristallographie. Ever since, the science of crystals — of-
ten considered as a form of applied mathematics — has been
called crystallography. It not only assessed the crystalline
part of Nature’s minerals, but also the crystals grown in the
chemical laboratory.

In the present paper we will sketch the development
that led to the crucial experiment of Laue, Friedrich and
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Knipping, that is, the directing of a beam of X-rays, first
at an arbitrary crystal of copper sulfate, next at a well
defined zinc sulfide platelet. We shall, first, give an im-
pression of the broad context by considering the concept
of ‘individual’ in natural history in general and in crystal-
lography in particular. Next we will see how ideas like
‘isomorphism’ and ‘polymorphism’ emerged in chemical
contexts. Gradually, what came to be known as ‘symme-
try’ imposed itself. We will follow it in the two predomi-
nating schools, that of Haiiy (Fig. 1) in France and that of
Weiss in Germany. In the French framework, the molecu-
lar theory reigned supreme. Those molecules were extrem-
ely small, that much was certain; their exact dimensions
defied the imagination. Their particular ‘symmetry’, how-
ever, had to be related to that of a crystal. We will see
how Haiiy’s pilings of polyhedra metamorphosed into Bra-
vais’ point lattices. Those lattices, then, came to be ana-
lyzed from the viewpoint of the new group theory. Laue,
Friedrich and Knipping, in a way, put a final end to that
development.

Fig. 1. René-Just Haily (1743-1822). Engraving by R. H. Delvaux,
from Lucas, Tableau Méthodique des Espéces Minérales (Lucas, 1806)
(courtesy: Bibliothéque Nationale de France).
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Our presentation of the facts is based on the original
texts of the foremost protagonists (Kubbinga, 2009). It
greatly profited from consulting John Burke’s monograph
Origins of the Science of Crystals (Burke, 1966) and the
collective Historical Atlas of Crystallography, as edited by
José Lima-de-Faria (Lima-de-Faria, 1990). In matters of
symmetry we, moreover, gladly made use of Johann Jacob
Burckhardt’s Die Symmetrie der Kristalle (Burckhardt,
1988).

2. Natural history circa 1800: the concept
of ‘individual’

In various respects the oeuvre of Jean-Baptiste Lamarck
(1744-1829) serves as a landmark in the history of
science of the early 19th century. The French naturalist
distinguished himself perhaps first and foremost in the do-
main of zoology, but his ideas on the relations between
the three natural-historical realms have had nonetheless a
broader influence. So it happened that one of the supple-
ments to Lamarck’s Recherches sur 1’Organisation des
Corps Vivants was devoted to the problem De [I’Espéce
Parmi les Minéraux, in other words, to that of the miner-
alogical species. In reaction to a claim to the contrary by
Daubenton, Lamarck here defends the view that mineral-
ogy, too, knows ‘individuals’. According to the author
“the individual of each and any mineral resides in its inte-
grant molecule” (Lamarck, 1802, p. 155). The context is
such that Lamarck cannot have had in mind something
other than the ‘integrant molecule’ of Haiiy, freed, it is
true, from some disturbing details, about which more in
the following. Haily had just published his impressive
Traité de Minéralogie, a textbook that was soon to be-
come a classic in the field and whose atlas was to count
among the most wonderful of the 19th century (Fig. 2).

The figures in that atlas are indeed such that the reader
gets the impression of seeing, as it were, the ‘integrant
molecules’ piling up themselves, first to constitute the
‘kernel’ (noyau) and next to form the successive indented
lamellae, the packing of which upon the facets of the
‘kernel’ nicely fits the decrescence laws. So the cubic mo-
lecules of pyrite first constitute the equally cubic ‘kernel’,
before forming one of the various derived forms, among
which is the pentagonal dodecahedron (Fig. 3). The aes-
thetics, to be sure, are not a haphazard detail: the engrav-
ings simply obey the prescripts of descriptive geometry,
that almost new branch of applied mathematics that had
been brought to maturity by Gaspard Monge (Taton, 1951,
1986), a mathematical advisor of Napoleon. The main ar-
gument, comprehensibly, was the correspondence between
theory and practice: the outcomes of Haiiy’s calculations
of the interfacial angles of his specially made beech mod-
els indeed neatly lined up with those measured from the
pyrite crystals of his collection. In his own way Haiiy
symbolized that alliance of space geometry, crystallogra-
phy and aesthetics, or more generally, that of mathematics
and physics, that was bound to determine the future. La-
marck’s words, quoted above, otherwise stress the crucial
role of the molecular theory in the natural sciences. In-
deed, molecularism was flowering everywhere.
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Fig. 2. Title page of Haiiy’s Traité de Minéralogie (Paris, 1801) (cour-
tesy: University Library Groningen).

An interesting case in point was the doctrine of Déodat
de Gratet de Dolomieu (1750—1801), as exposed in a small
but insightful tract entitled Sur la Philosophie Minéralo-
gique et sur I’Espece Minéralogique, in which he assessed
the basic ideas of his science (Dolomieu, 1801; cf. Go-
dant, 2005). The booklet appeared in 1801 and its author
is revealed as congenial to Haiiy. He underscores for in-
stance, in Hatiy’s spirit, a number of errors in traditional
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Fig. 3. The piling of the cubic ‘integrant molecules’ which forms the
pentagonal dodecahedron of pyrite. Notice the decrescence of the mo-
lecular lamellae in the proportion of 2:1, which leads to an interfa-
cial angle at pg of 126°52'12", closely corresponding to that of the
empirical crystal, viz 127°56/08” (Haiiy, 1801, Atlas).
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mineralogy, especially with respect to the identification of
‘species’. In a sense, Dolomieu completes the theory of
his colleague. He indeed takes all his time to work out the
molecular framework of inorganic nature up until the
subtlest details. In nature, after all, there is not only the
matter of nicely formed polyhedral crystals, but also of the
formless materials of the chemists and the geologists, and
the pebbles and rocks of the petrologists. In Dolomieu’s
view, then, the mineralogists commit two methodological
errors. The first relates to their predelection to define first
the ‘classes’ and to distinguish only afterwards the ‘spe-
cies’ that constitute them. The second error concerns the
habit of considering each sample as an ‘individual’. When
we may believe Dolomieu, “the species only exists in the
integrant molecule” (Dolomieu, 1801, pp. 38—39), a tenu-
ous particle that is said to be determined by a fixed chemi-
cal composition and by a characteristic geometrical form,
the so-called primitive form. There are ‘demarcations’ be-
tween the species, in other words: the species do not im-
perceptibly transform into each other, but only in a salta-
tory way, with jumps. The implication is that one of the
current classificatory schemes, that of the great ‘chain of
being’, in which the lowest minerals gradually pass into
the highest forms of life, is bound to be erroneous (Do-
lomieu, 1801, pp.43—44). The ‘integrant molecule’ is a
really ‘complete individual’; the question whether or not
there exists an ‘aggregate’ of such ‘individuals’ is in fact
irrelevant, at least in this connection. Such an ‘aggregate’
is at best a ‘collection of mineral individuals’, comparable
to a bunch of grass or cereal picked from a field by the
botanist. So-called pure aggregates are similar to a sheaf
of cereal, mowed from a particular field that had been
sowed with one particular kind of seed. Undoubtedly one
of the cereals — let’s say, wheat — will predominate, but
the sheaf will surely also contain ears of barley and rye
and, of course, weeds. Elsewhere in his tract Dolomieu
compares what we would call a ‘mechanical mixture’ with
a mixture of grains of wheat and rye or with a piece of
granite, of which the grain-like structure is directly visible
to the eye. He is even conscious of the fact that many
kinds of substances might remain unknown to us for the
only reason that their imperceptibly small ‘individuals’
have not had occasion to form ‘aggregates’ big enough to
be observed. The professional mineralogist only encoun-
ters ‘aggregates’ and the physical particularities of these
add up with the chemical properties of their ‘integrant mo-
lecules’. It is for this reason that, on the one hand, the
‘chemical’ existence of a material species is realized in
each and every molecule, while, on the other hand, the
‘physical’ existence depends on the occurrence of an ‘ag-
gregate’. Only with this distinction in mind is one at lib-
erty to consider a more or less regularly formed ‘aggre-
gate’ as an ‘individual’. In favorable circumstances the
molecules may assemble in a symmetric way, such that
the aggregate adopts the form of the separate molecule, or
at least an analogous one. Such a pile, Dolomieu writes,
may “by metaphoric extension” be considered as an ‘indi-
vidual’. This holds, for instance, for the mineral calc spar.
A substance like ‘Champagne chalk’ (craye de Champagne)
belongs, it is true, to the same chemical species, viz lime
carbonate, but the physical form is principally different.

Other deviations derive from lesser regularity in the piling
up of the ‘integrant molecules’ or are due to the presence
of other molecules. In the first case they concern ‘varieties’,
in the second ‘variations’. In the latter case there are either
‘superfluities’ or ‘pollutions’. ‘Superfluities’ concern col-
oring or odoring bodies and sometimes phosphorescent
components that are enclosed inside the ‘integrant mole-
cules’ without changing the latters’ nature. The transpar-
ency of the crystal does not suffer from them and neither
do the other properties. Such a crystal, therefore, still is a
pure one. ‘Pollutions’ are additions that, during the crys-
tallization process, take place between the ‘integrant mole-
cules’ bringing about important changes in transparency,
color, lustre, hardness and density. The result, Dolomieu
claims, is always a ‘heterogenous body’ or, in our words,
a mechanical mixture.

Dolomieu concludes with a parallel between living
beings and crystals. For crystals, too, it would be true, in
a metaphysical sense, that the same produces the same.
The observable ‘physical individual’ reproduces on a lar-
ger scale the ‘chemical individual’, a process in which the
‘precision’ (exactitude) of nature is far greater than with
living beings (Dolomieu, 1801, p. 116).

In summarizing we may contend that Dolomieu pro-
vided precisely what lacked with the chemist Lavoisier
and the physicist Laplace, to mention only the foremost
protagonists of the molecular theory. His notion of the
‘mineral individual’ is such that the integrant molecule has
to be considered as a ‘complete’ individual. Because of its
wealth of details, Dolomieu’s booklet is at once highly
illuminating of the situation in 1801. Where Dolomieu
emphasizes the chemical composition of the mineral and
reasons from the viewpoint of its molecules as its raison
d’étre, Haiiy had gone the other way around. Indeed, in
Hatiy’s view it is only possible to establish something val-
uable about the integrant molecule when one begins at
the level of the aggregate, a procedure implying that crys-
tallographic considerations ought to prevail. As late as
1822, in his Traité de Cristallographie, the crystallogra-
phical species is defined as a ‘collection’ of crystals, each
of which has to be regarded as an ‘individual’, that is to
say, in the physical sense of Dolomieu (Haiiy, 1822).

In the following, we propose to study first those as-
pects that concern chemical composition. Although the
‘fixed composition’ seemed perhaps self-evident, in view
of the specific geometry of the ‘integrant molecule’, there
were nonetheless several most disturbing cases. Dolomieu
himself referred to calcareous spar and Champagne chalk,
minerals that decidedly represent the same chemical sub-
stance, although they have essentially different crystalline
forms. Apparently it is possible that one and the same
substance may occur in different solid states, a fact that is
hardly reconcilable with the doctrine of three states of ag-
gregation, that is, incompatible with the very foundation
of the physico-chemical molecularism of about 1800. Do-
lomieu could have mentioned two more forms of lime car-
bonate, viz Icelandic spar and aragonite, crystal species
that had seriously worried Haiiy. Another nasty question
concerned the discovery, in 1819, that the opposite of
what we indicated is also possible, namely that different
substances of an otherwise comparable composition may
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adopt the same crystalline form. For a chemist like Berze-
lius this amazing find had important consequences as to
the magnitude of the atoms of different elements. The two
phenomena in question, i.e. ‘allotropy’ — or, more gen-
erally, ‘polymorphism’ — and ‘isomorphism’, will be dis-
cussed in the following section. Next we will consider
there the emergence of a mineral individual in the physical
sense, more or less as envisaged by Dolomieu, that is, by
starting from the ‘integrant molecules’. Dolomieu had in-
dicated that that process of crystallization proceeds under
favorable circumstances “in a symmetric way”, such that
the growing crystal maintains the ‘primitive form’, that is,
the one of the ‘integrant molecule’. In Section 4 we intend
to deal with that notion of ‘symmetry’, its introduction to
crystallography and its irresistable advances. So we will
see how considerations of symmetry were going to deter-
mine the terminology, while enabling at the same time
techniques to relate faces and angles among each other, all
this against a plainly molecular background. Two schools
of thought came up in this context, a French one around
Haiiy and a German one around Weiss. It was a momen-
tous event, in the autumn of 1895, when Wilhelm Ront-
gen (1845-1923) discovered a new kind of radiation. In
the 1910s the specialists would succeed in finding correla-
tions between the ‘photograms’ made with the new radia-
tion and the highly abstract fruits of the theorizing in the
domain of ‘symmetry’ by the mathematical crystallogra-
phers.

3. Mitscherlich: isomorphism and
polymorphism

In Haiiy’s crystallography the chemical identity of a sub-
stance dwells in each and every of its integrant molecules.
Such an ‘integrant molecule’, naturally, cannot but result
from particular numbers of the atoms of the various spe-
cies in question, heaped up in a particular spatial way. For
a contemporary chemist like Joseph Louis Proust (1754—
1826) this was a capital claim, since it supported his law
of definite mass composition of compounds. About 1808,
the year of the publication of the first parts of John Dal-
ton’s New System of Chemical Philosophy, the ‘integrant
molecule’ came close to what might be called a ‘substan-
tial individual’: it determined the species of the substance
in question and was composed of atoms, the form of
which was mostly thought of as spherical. Dalton himself
went even farther afield and believed all kinds of atoms to
be of the same magnitude. This equality was hard to ac-
cept for many colleagues who realized that it did not
really fit in with the traditional view, held since Antiquity,
that atoms are just fragments of one and the same prime
matter. Dalton, however, had other concerns; his convic-
tion was based upon the thermal behavior of gases, the
cornerstone of his new chemical philosophy.

Dalton’s hypothesis was not too bad after all, as be-
came evident at the end of 1818 and the beginning of
1819. The newly converted chemist and crystallographer
Eilhard Mitscherlich (1794—1863) — he had been a lin-
guist before — was struck at that time by the equality in
form of the crystals of two different compounds of other-

wise similar composition: potassium phosphate and potas-
sium arsenate. In Mitscherlich’s train of thought, two com-
pounds corresponding in the numbers of the various kinds
of atoms could not possibly crystallize without adopting
the same geometrical form. On transit in Berlin, in August
1819, while traveling home from Paris, the great chemist
Jacob Berzelius (1779-1848) made Mitscherlich’s ac-
quaintance. Hearing of his host’s most surprising discov-
ery, Berzelius was excited, since it implied the confirma-
tion of his own — and Dalton’s! — hypothesis in which the
equality in form and magnitude of the atoms was a funda-
mental idea.

On 9 December 1819, Mitscherlich’s find was reported
before the Konigliche Akademie der Wissenschaften, in
Berlin. It by now concerned the crystalline form of the
salts of phosphoric and arsenic acid with one and the
same series of metal oxides, all featuring the formula
Me + 2 O. The acids in question had the formulae P 4+ 50
and As + 50. In order to express the proper character of
the resulting salts it was enough for Mitscherlich to speci-
fy the numerical proportion between the oxygen atoms in
the oxide, the acid and the crystallization water’. So he
found for Me = Fe, Cu, Zn, Pb, Co, Ni, Ba and Ca in
each case the same crystalline form. Almost in passing he
wrote that he used the reflection goniometer, a new instru-
ment deviced by Wollaston, but did not give angle meas-
urements. Small variations in the interfacial angles — up
to 2°, to be precise — had been neglected, the audience
was told. What Mitscherlich had noticed for phosphates
and arsenates appeared to hold also for other groups of
salts. His investigations not only included mineral salts, as
found in nature, but also new compounds, artificial ones,
made in the laboratory, particularly a whole series of sul-
fates. With artificial salts interesting peculiarities showed
up. One succeeded, for instance, in bringing them to crys-
tallize together from a solution, the mother liquor, in
which case ‘double salts’ resulted. It was also possible to
crystallize a salt upon the crystal of another salt. In both
cases there was no change in crystalline form. As such,
this phenomenon was not completely new. After all, it was
Haiiy who had drawn attention to the coexistence of the
carbonates of iron and calcium in fossilized shells. The
Frenchman had been surprised to see that the iron carbo-
nate that had taken the place of the calcium carbonate in
the shell had adopted the crystalline form of the latter
(Hatiy, 1801, i, p. 140). This was problematic indeed since
different salts, with Haiiy, ought to have different crystal-
line forms, almost on principle. In order to save himself
from the embarrassing situation, he claimed that it seemed
as if the calcium carbonate had put its stamp upon the
newcomer. It was a matter of ‘crystallization force’ (Krys-
tallisationskraft), we read in Mitscherlich’s paper (Mit-
scherlich, 1819, p. 431). In normal circumstances iron car-
bonate always adopts its customary crystalline form, but in
the presence of calcium carbonate it subjects itself to that
of the latter. In the case of the sulfates something similar
was at stake, Haiiy believed. A mixture of the sulfates of

2 Mitscherlich did not use formulae; for shortness’ sake we here
use those of Berzelius, upon whose chemistry Mitscherlich based his
own.
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iron and zinc, for instance, always adopts the form of the
iron salt; barely 1% suffices. The implication of his rea-
soning is evident: in all cases where an impossible crystal-
line form shows up, there is in fact a polluting substance
in the game, one with a great ‘crystallization force’. Mit-
scherlich, however, was not really convinced by Haiiy’s
evident subterfuge. His own experiments on triple salts,
more particularly on the double salts with crystallization
water known as the alums, showed that the salts mostly
adopt another form, instead of their own, i.e. when they
are in the pure state. With the pure sulfate hydrates he
distinguished otherwise three groups, depending on the
quantity of crystallization water: it was a matter of either
five, six or seven ‘proportions’ (Proportionen). The sul-
fates of copper and manganese have five ‘proportions’ of
water, those of iron and cobalt six, those of zinc, nickel
and magnesium seven. When preparing double-salt hy-
drates from equal amounts of the salts in question, it
seemed reasonable, then, to expect a hydrate with the
summed ‘proportions’ of water. In the case of the sulfates
of iron and zinc, for instance, a number of 6 +7 = 13
‘proportions’ of water could be foreseen. In practice, how-
ever, one always found only 12 of these. Similarly, in case
of the double salt of iron and copper sulfate one expects
11 ‘proportions’, but finds 12. The conclusion apparently
is that in their double salts the sulfates behave differently
as compared to the pure state. An appeal to the greater
‘force of crystallization’ of one of the components thus is
in vain, the more so since the alums of copper sulfate (5x
water), on the one hand, and equal amounts of either zinc
or nickel sulfate (both 7x water), on the other, adopt the
same rhombohedral form as the forementioned alums. In
the style of Haiiy’s reasoning, one would feel compelled
to conclude that they stick to the form of iron sulfate,
even in the absence of that salt.

What applies for the double and triple salts of the sul-
fates probably also holds for the metal oxides present in
them, Mitscherlich thinks, all having the formula Me + 2 O.
This is no more than a hypothesis on a provisional basis,
since one had not yet been able to crystallize those oxides.
With oxides of the type Me 4 30O, at least for those of
iron and aluminum, though, it is the case that they possess
the same crystalline form and produce similar double and
triple salts. From the oxides of the type Me + 3 O to those
of the type Me + 2 O, then, is but a small step.

Mitscherlich contented himself with describing his
theory and with indicating that it confirms the stance of
Berzelius. At the same time he avoided criticising the
‘dynamic’ crystallography of his colleague in Berlin,
Weiss, although he consciously chose the atomic theory
instead. At the end of 1819, as the prospective successor
to the chemist Klaproth, he was allowed to make a trip to
Stockholm on the account of the Prussian government in
order to familiarize himself with both the theory and
practice of his great example, Berzelius. In the latter’s la-
boratory he was to concentrate upon the salts of phospho-
ric and arsenic acid. The results were first published in
Swedish, later also in French, more particularly in the
Annales de Physique et de Chimie, the flagship of contem-
porary natural science. In the French text he called metals
‘isomorphous’ when a group of similar salts adopted the

same crystalline form. It is for that reason that (Mitscher-
lich, 1821, p. 419):

“The same number of atoms combined in the same way
[produce] the same crystalline form; and that same crystal-
line form is independent of the chemical nature of the atoms
and is only determined by their number and relative position-
ing.”

But there was more at issue. Some of the investigated
salts suggested that one and the same substance, depend-
ing on the circumstances, could adopt essentially different
crystalline forms. The oxides of the type Me + 20, for
instance, appeared to occur in two groups. One group con-
cerned Me = Ca, Mg, Mn, Fe, Cu, Zn, Co and Ni, the
other group Me = Pb, Sr and Ba. These two groups thus
also formed two groups of phosphates, sulfates efc. and,
moreover, two groups of double and triple salts. No other
reason could be imagined than the two ‘proportions’ of
oxygen, or perhaps better the two O ‘atoms’, occupying
different positions with respect to the central Me ‘atom’.
Calc spar and aragonite gave the clue to the riddle: lime
carbonate belonged to the first group, aragonite to the sec-
ond. Calcium oxide, Ca + 20, is part of both minerals
and the only reasonable difference that could be invented
was a difference in position of its three ‘atoms’. This
oxide in a way bridges the gap between both groups and
the reader of the captivating account of Mitscherlich is by
now ready to accept the conclusion that the Me ‘atoms’ of
the type Me + 2O have to be of the same magnitude. In-
terestingly, that conclusion had already provisionally been
drawn by his host, Berzelius, in the latter’s Essai sur les
Proportions Chimiques (1819).

Berzelius had in fact maintained that all atoms, what-
ever the element, have the same size, in the understanding
that small variations are allowed to explain the differences
between crystals of comparable composition. Howsoever
this may be, Mitscherlich remains silent. It seems as if he
grants his host the honor of the practical application. Sure
enough, he is conscious of the fact that particular sub-
stances may adopt different forms and that this phenomen-
on as such derives from the properties of the atoms. Be-
fore long, Mitscherlich hit upon the interesting case of
two forms of the very same substance that can be prepared
independently and, what is more, could be transformed
from one into the other. It concerns sulfur. This, chemi-
cally speaking, simple substance — in the sense of Lavoi-
sier — was known to be soluble in carbon disulfide. When
such a solution is evaporated, crystals emerge that are per-
fectly similar to those of native sulfur. When, on the con-
trary, natural sulfur is melted and the resulting melt al-
lowed to slowly cool down, a wholly new kind of crystal
is obtained (Fig. 4). The case strangely resembles that of
aragonite and calc spar, or perhaps that of pyrite, of which
Berzelius had just found a new, white form (marcasite).

The tenor of Mitscherlich’s logic is obviously firm sup-
port for the atomic and molecular theory: it is sufficient to
imagine an alteration in the piling of the atoms inside the
‘integrant molecule’ to understand what happens during
the interconversion of both kinds of sulfur. With Dalton,
Berzelius, and by now also Mitscherlich, most of the theo-
reticians assessing the nature of matter would endorse, in
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Fig. 4. The two crystalline forms of sulfur and some of their varieties
according to Mitscherlich. Nos. 1-6 represent either natural crystals
or crystals obtained by evaporation from dissolutions in carbon disul-
fide. Nos. 7—11 show crystals that emerged from melted sulfur (Mit-
scherlich, 1896, Table IV). Since Gadolin (1871) they have been known
as the ‘rhombic’ and the ‘monoclinic’ form, respectively.

the years 1819—-1840, the atomic theory and maintain that
all atoms are of the same magnitude. The favorite example
was the isomorphism of potassium permanganate and po-
tassium perchlorate: where such greatly differing elements
like Cl and Mn are interchangeable, there is every reason
to suppose that it is a general phenomenon, or in the ter-
minology of the time, a ‘law of nature’. When one allows,
with Mitscherlich, for slight variations in the magnitude of
characteristic angles, from species to species, and that
even within one and the same species a change in tem-
perature may bring about small alterations, the idea of the
‘integrant molecule’ as a specific unit with a characteristic
spatial structure seems almost obvious. It is perfectly un-
derstandable, in hindsight, that this purely crystallographic
notion could contribute to the coming of age of structural
chemistry.

The term ‘isomorphism’ may perhaps come from Mit-
scherlich: in the particular case of sulfur one was to speak
shortly of ‘dimorphism’. Carbon and phosphorus® ap-
peared to be similar in this respect. Carbon even knows a
third mode of existence, that of soot and coal, formless
ones, that would be called therefore ‘amorphous’ (1833).

3 Red phosphorus was not yet known; it was discovered in 1847
by the Austrian chemist Anton Schrétter.

In his Jahres-Bericht of the year 1841 Berzelius was to
propose the term ‘allotropy’ instead of ‘dimorphism’, if
only to indicate that both forms may be converted into
each other. The difference between the classical form of
pyrite and the new, white one he here attributed to both
forms of sulfur: the yellow pyrite was said to contain the
one form, the white pyrite the other. Since there was like-
wise a question of a fixed transition temperature, about
96 °C, Berzelius moreover thought that it concerns a
change in the number of sulfur atoms per molecule, even-
tually a change in their orientation in space. From about
1859 onwards the term ‘polymorphism’ came into use as
a general word for the phenomenon that compounds and
simple substances alike may occur in different crystalline
forms. From time to time one realized, with Berzelius, that
the chemical phenomenon of ‘isomerism’, implying the
same molecular formulae for different substances, could
be something similar. This was the reason that ‘allotropy’
and, more generally, polymorphism, were sometimes con-
sidered as forms of ‘physical isomerism’. Implicitly, the
doctrine of three states of aggregation is under critique,
the doctrine that had been proclaimed the basis of all theo-
ry of matter by Lavoisier and Laplace. That doctrine ap-
parently had to be taken as a first approximation, that
much was certain by now. The phenomenon of ‘poly-
morphism’ or ‘physical isomerism’ after all seemed to in-
dicate that one and the same substance might occur in not
just one, but in various solid states. Anyway, in the debate
on the nature of the various solid states of the very same
substance one may see the roots of a much more general
theory, that of ‘phases’, the theory that Josiah Willard
Gibbs would formulate in the 1870s.

4. The concept of symmetry; Haiiy and Weiss

The systematic study of the geometry of crystals, launched
in the last decennia of the 18th century by Romé de 1'Isle,
Werner and Haiiy, led to considerations about their ‘sym-
metry’. As we will see in the following, this concept
stems from architecture. Above we noticed how Dolomieu
described the growth of crystals: in his eyes, it was a pro-
cess that proceeded “in a symmetric way”, an expression
meant to stress the regularity in the growth. It was not at
all a current expression, neither in crystallography, nor in
mineralogy. In all probability we owe its introduction to
Haiily. At a particular moment the latter came to speak of
a ‘law’. Ever since, crystal symmetry would be of central
importance. Here we will discuss its development in the
two foremost schools, the one centering around Haiiy, in
France, the other around Weiss, in Germany. The two
schools were diametrically opposed to each other, particu-
larly as to the standing of the molecular theory; their con-
cept of ‘individual’ was also different. For both schools
the virgin crystal and its outward geometry were perhaps
the starting point; the French tried to go back to the con-
stitutive, imperceptibly small parallelepipeda, where the
Germans stuck to the ‘axes’ which could be deduced from
the physical and geometrical properties at our level. The
French parallelepipeda were just tiny, block-like polyhe-
dra, those of the integrant molecules. These were, it is
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true, hypothetical entities but they charmed the imagina-
tion and led to interesting associations. Something similar
may be said of the German ‘axes’. What was called the
‘decrescence law’ in the one school carried the name
‘zone law’ or, although somewhat later, ‘law of rational
indices’, in the other. In the course of the 19th century the
German school, which was initially decidedly anti-molecu-
lar, gradually surrendered to the French crystallography on
a molecular footing, the French school estranging itself
from the scientific community by a rigid scepticism of a
would-be positivistic inspiration. This explains why the
great innovations of the years 1876-1891 were put for-
ward if not in Germany as such, then at any rate in the
germanophone literature. Before its turn to scepticism, the
French school, it is true, would resolve some weak points
in Haiiy’s theory. The English crystallographers generally
followed the German example, particularly since William
Whewell. As if John Dalton had not been one of theirs,
they came to take their distances from the molecular theo-
ry, although — let us say, as an apology — they may be
credited for having introduced interesting improvements in
the German mathematical approach (Sénarmont, 1842).

4.1 The French school

In order to get an idea of what was understood in the 18th
and at the beginning of the 19th century by the notion of
‘symmetry’ it suffices to consult the Encyclopédie [...] of
Diderot and d’Alembert. The lemma in question is without
the name of the author, but a reasonable guess would be
that it is a contribution by d’Alembert. It reads as follows:

“SYMMETRY (Architect.) is the relation, the proportion and
the regularity of parts that are necessary to compose a nice
whole [...].”

The author adds that the Roman Vitruvius, in antiquity,
had argued that between the parts of a whole:

“there has to be a proportion like that particularly precise
one between the arms, elbows, hands, and fingers and other
parts of the human body, with respect to each other and to
the whole.”

In 1795 this idea of ‘symmetry’ would be applied to
the polyhedra of geometry by Adrien-Marie Legendre
(1752-1833), one of the professors at the Ecole normale
meetings of that year, in Paris. In his Eléments de Géomé-
trie he described as ‘symmetric polyhedra’ (Legendre, 1794,
p. 167):

“two polyhedra that have a basic plane in common and are
built in the same way, the one at the upper-side of that plane,
the other at the lowerside, in such a way that the homologous
solid angles are at the same distance from the basic plane and
situated at the same perpendicular through that plane [...].”

Legendre was conscious of the fact that, rather often,
polyhedra are ‘symmetric’ without being superimposable.
Later, it was Alexandre Joseph Hidulphe Vincent (1797—
1868) who, in his Cours de Géométrie [...], argued that
different forms of symmetry had to be distinguished in
one and the same polyhedron, indeed not only with re-
spect to a plane, as with Legendre, but also with respect
to a point or with respect to an axis. Vincent’s proposition

implies in practice that both polyhedra of Legendre are to
be taken as just one polyhedral whole which, henceforth,
is the object proper whose ‘symmetry’ must be deter-
mined.

A first crystallographic application of the concept of
‘symmetry’ we found in the work of Haiiy, more particu-
larly in his course at the Ecole normale. During the first
lecture he came to speak in detail about the relation be-
tween the ‘kernel’ of a crystal and the derivative forms
that result when the layers of additional molecules are
piled up correctly (Fig. 3). Those derived forms are such
that they correspond to the simplest decrements, namely
with one, two or three ranks of molecules, in the under-
standing that the decrements on corresponding faces are
equal. The word ‘symmetry’, it is true, was used in his
first publication, the Essai d’une Théorie sur la Structure
des Crystaux [...] of 1784, but it was only in his classes
at the Ecole normale that he spoke for the first time of a
‘law’ (loi) (Hatiy, 1795, p. 45):

“[...] the manner in which Nature creates crystals is always
obeying to the law of the greatest possible symmetry, in the
sense that oppositely situated but corresponding parts are al-
ways equal in number, arrangement, and form of their
faces.”

It is this ‘law’ that plays in the background of all later
publications and was to be proclaimed once and for all in
the well known Mémoire sur une Loi de Cristallisation,
Appelée Loi de Symétrie (Haiiy, 1815). In this memoir he
otherwise consciously excludes certain crystals, among
others boracite and the tourmalines, a group of silicates
which, when heated, charge themselves electrically, a pro-
cess showing the presence of an ‘axis’ linking the oppo-
sitely charged parts of the crystal. Strictly speaking, the
presence of such an ‘axis’ ought to be accounted for in
the outward geometrical properties that determine the spe-
cies.

Apparently it is true that with crystals, although the
material distribution in the aggregate is everywhere the
same, there may occur a variation in their properties, de-
pending on the direction that one chooses to inspect. In
other words: crystals are at once homogeneous and ani-
sotropic. As early as 1677, this had been considered by
Huygens in the context of his search for an explanation of
the behavior of Icelandic spar, more particularly its double
refraction. At the beginning of the 19th century Thomas
Young took the next step; he based his new undulatory
theory of light directly on Huygens’ results. It gradually
became clear that the combination of homogeneity and
anisotropy was not at all exceptional. During the course of
the 19th century more and more properties were discov-
ered that behaved like double refraction. One may think of
hardness, elasticity, thermal expansion, and the thermal
and electrical conductivities (Delafosse, 1840, pp. 17—-18).
Generally speaking, even the cleavages that a crystal ad-
mits may be interpreted as expressions of its anisotropy.
This holds particularly for those crystals in which exactly
one half, one third or one quarter of the corresponding
parts of the ‘kernel’ are at issue. The crystallographers
speak of ‘homohedry’ when all faces and all angles of a
crystal are equivalent. In the same vein, the terms ‘hemi-
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hedry’, ‘tritohedry’ and ‘tetartohedry’ referred to cases in
which only one half, one third or one quarter of the pre-
sent faces and angles featured similarly.

The doctrine of crystal symmetry would evolve in
France against a background of exclusively molecular
ideas about the internal structure of crystals. Gabriel Dela-
fosse (1796—1878), a former student and collaborator of
Haiiy, devoted his dissertations to this subject, dissertations
that he defended in September 1840 before the Faculty of
Science of the Sorbonne, Paris (Delafosse, 1840). In the
principal dissertation he stressed the importance of the
notion of ‘crystal system’, meant to represent the collec-
tion of all forms in which a crystal may occur. As such,
the unlimited number of possible forms that a crystal may
adopt can be reduced to a small number of so-called
‘generic forms’. Here the only lead to follow in the deduc-
tion of the various forms from each other and their distri-
bution in ‘systems’ is the ‘symmetry law’ of Haily. In par-
ticular, the German crystallographers, urged by Weiss, had
ventured to derive the first classifications in terms of
‘crystal systems’. In so doing they noticed, it is true, the
various gradations of symmetry, but they did not dare to
present an explanation. So one reads in their works that,
often, it occurs that geometrically corresponding parts are
also physically equivalent, although this is not always the
case. Delafosse refers to the cubic crystals of rock salt as
an example: the solid angles, here, are both geometrically
and physically identical, since eventual imperfections al-
ways occur at all eight angles. All diagonals of the faces
are equivalent, just like all the edges, while at those edges,
the left-hand side is equal to the right-hand side. However,
in case of the cubic crystals of boracite, there are two
groups of four solid angles, the diagonals being divided
into two groups of six; moreover, the diagonals of the
same face are not equivalent. The edges are equal, though,
manifesting what Delafosse calls ‘bilateral symmetry’ (cf.
Figs. 5 and 6a).

Finally, Delafosse alludes to the existence of a third
kind of cubic crystals, of which those of pyrite are a good
example. A cube of this type may be derived, in the mind,
either from the pentagon-dodecahedron by suitable homo-
hedral truncations — that is, on all sides — or from the
cube itself by such hemihedral truncations that there re-
sults a body with parallel faces. In these instances, all so-
lid angles, all diagonals and all edges are mutually equiva-
lent. The only deviation concerns the edges, which lack
that forementioned ‘bilateral symmetry’. One glance at a
pyrite cube suffices indeed to notice that deviation: on the

Fig. 5. Cubic crystal of boracite. The sets of parallel lines, the stria-
tions, suggest a molecular piling of lower symmetry (Delafosse, 1843).

Fig. 6. The ‘lattices’ (réseaux) of the tetrahedral molecules of bora-
cite that constitute either a cube, (a), or a tetrahedron, (b) (Delafosse,
1843). A packing such that there would result a dodecahedron of
pentagons appears to be impossible.

left-hand side and on the right-hand side of each edge,
sets of parallel lines — striations — show up that, although
not lying in the same plane, are perpendicular to each
other (Delafosse, 1840, pp. 19-20).

In short, not every cubic crystal is blessed with the
maximum of symmetry. More generally speaking one may
claim that the same polyhedron, depending on the internal
piling of the molecules, manifests different kinds of sym-
metry and, therefore, pertains to different crystal systems.
Consequently, the external symmetry of a crystal has to be
carefully distinguished from its internal symmetry, the lat-
ter having both physical and geometrical aspects reflecting
the molecular structure. Delafosse complains, curiously
enough, that of the mathematicians only Legendre and
Vincent have taken the trouble to analyze the symmetry of
space polyhedra. Howsoever this may be, he continues,
the term ‘symmetry’ is best reserved for the mutual rela-
tions between the parts of one and the same whole, thus
clearly in the spirit of Vincent (Delafosse, 1840, p. 24):

“A whole is symmetric when it manifests a particular regular
building plan which ordains the arrangement of the compos-
ing parts, a condition that implies that among those parts
there are some that repeat themselves various times, main-
taining in the process the same form and the same value,
while occupying also similar positions with respect to a cen-
ter or system of axes.”

Elsewhere, in the second dissertation, he defines as fol-
lows (Delafosse, 1840, p. 51):

“Symmetry [...] is nothing but the geometrical expression of
that analogy in form and structure which is so common for
natural beings and which has led to the declaration that
everywhere one finds back the unity in the variety.”



Crystallography from Haiiy to Laue

In crystallography this implies that all crystals of a par-
ticular mineral may be called ‘iso-symmetric’. The maxi-
mum of symmetry is realized in those regular polyhedra
that are named after Plato: in these, all constitutive parts
are of the same kind, in other words, all edges, diagonals,
faces and solid angles are identical. In contrast, the mini-
mum of symmetry is manifested by those bodies in which
there is no repetition of equal parts at all, that is, in which
all parts are unique. Crystals usually position themselves
between these extremes and the same holds for their ‘in-
tegrant parts’ and the physico-chemical molecules which
compose these”. Definitely: as to symmetry, the crystallo-
grapher has to proceed down to the molecules. The latter
are perhaps still imperceptible as to their magnitude, their
‘symmetry’ may be determined nonetheless exactly and
expressed in a so-called ‘representative form’. With rock
salt, for instance, the symmetry of the molecule is maxi-
mal, viz that of the cube. In boracite, on the contrary, the
molecular symmetry is that of a regular tetrahedron, while
that of pyrite corresponds to that of a dodecahedron of
pentagons. That ‘representative form’ in a way is the
‘physical equivalent’ of the real molecules.

With the foregoing in mind, the structure of crystals
may be deduced in the following way. The observer acts
as if he is situated at the center of gravity of one of the
molecules of the crystal. Looking around, from that posi-
tion, he remarks in particular directions ‘rows of mole-
cules’ (files moléculaires), each with determinate quantita-
tive regularities, namely the orientation in space and the
mutual distance. The number of directions in which those
‘rows of molecules’ manifest themselves will be small, all
‘rows’ of the same direction being equivalent. In the same
way the ‘planes’ may be considered that, filled with mole-
cules, intersect at the point of observation. There thus are
three distinct categories: ‘molecules’, ‘rows of molecules’
and ‘planes of molecules’. Since the molecules possess a
symmetry of their own, it is obvious that the two extremi-
ties of the same molecular ‘row’ need not necessarily be
equivalent, the ‘row’ itself, depending on the nature of the
molecules, having a ‘bilateral’, ‘trilateral’ or even higher
symmetry. When the endings of the same molecular ‘row’
are not equivalent, one could speak of ‘polarity’: this could
be the explanation of that curious phenomenon of thermo-
electricity of boracite and the tourmalines, the phenomen-
on that had defied if not daunted Haiiy. What applies for
the ‘rows’ equally holds for the ‘planes’, that is to say the
molecular monolayers: their upper and lower sides may be
equivalent or not, depending on the symmetry and the or-
ientation of the molecules.

Delafosse ends up by summarizing the conclusions of
his profound reflections on the interior of crystals in seven
‘propositions’. The message is unambiguous: the external
geometry is insufficient to determine the crystal’s species,
the physical properties have to be accounted for. The
‘species’ thus is determined by both the geometrical and
physical symmetries, which together derive from the che-
mical composition of the molecules. The latter we may,
for want of well founded knowledge, replace, in abstracto,

4 The ‘integrant part’ of Delafosse corresponds to the ‘subtractive
molecule’ of Haiiy.

by their symmetry, as carried by their ‘representative form’.
With emphasis, though, Delafosse remarks that homohe-
dry, hemihedry and tetartohedry are not to be confused.
Hemihedry and tetartohedry are not, as the Germans think,
imperfect cases of homohedry, but testify to principally
different crystalline structures.

It will be the task of the crystallographer, then, to de-
termine the measure of symmetry of a crystal. Delafosse
discusses two procedures. The one is a succession of ap-
proximations: first one applies Haiiy’s purely geometrical
method, before envisaging the physical properties. The
choice of the ‘kernel’ — named ‘fundamental form’ in this
context — is somewhat arbitrary, Delafosse concedes, but
this is said to be unavoidable. The other procedure for the
determination of the symmetry is that of Weiss and his
school. It consists of choosing a system of axes of appro-
priate dimensions and angles, and indicating, subsequently,
the symmetry properties. It will be a matter of establish-
ing, on the one hand, whether those axes are ‘isopolar’ or
‘heteropolar’, and, on the other hand, their numerical later-
ality (bi-, tri- efc.). The latter procedure appears to be the
most attractive to Delafosse, although he adds that, as far
as he himself is concerned, those ‘axes’ are more than just
geometrical aids that exist only in the mind of the obser-
ver: those ‘axes’ in reality are ‘rows of molecules’ that
exist as such in the crystal.

Next follows a paragraph about the nomenclature of
derived crystal polyhedra. The cube with six lower pyra-
mids upon its faces, for instance, is called a hexakistetra-
hedron, or more simply, as with Haiiy, a hexatetrahedron.

The German school had arrived at the recognition of
the existence of six different systems of axes and thus of
six crystal systems. Considering the various physical prop-
erties, each of these was supposed to consist of many spe-
cies. Therefore Delafosse divides them into what he calls
‘natural groups’. The ‘hemihedral’ forms of the German
crystallographers, for instance, constitute such a ‘natural
group’, along with the ‘tritohedral’ and the ‘tetartohedral’
forms. With the tritohedral derivative forms of the cube
two of the three pyramidal axes are eliminated; in the te-
tartohedral group three of the four rhombohedral axes are
lacking. The classification, then, ends up with six ‘sys-
tems’: in Delafosse’s terminology the cubic, the hexago-
nal, the tetragonal, the orthorhombic, the klinorhombic
and the klinohedral system, roughly in order of decreasing
symmetry.

In the Theése Supplémentaire — in 1840, at the Sor-
bonne, the promovendus was expected to defend two the-
ses, the These Principale and the Thése Supplémentaire —
Delafosse underscores the importance of symmetry in the
other kingdoms of nature, that of the vegetables and that
of the animals. All depends on the notion of ‘individual’,
he deems here. Whether one looks at organic or at inor-
ganic bodies, they always concern either ‘individuals’ or
‘aggregates’. In mineralogy and crystallography the spe-
cies is concentrated in the physico-chemical molecule
which features as the ‘individual’. The symmetry of those
constitutive molecules therefore determines the crystal
structure, of course only if that crystal adopts indeed a
regular form. The physico-chemical molecule apparently
determines all relevant properties. Such a molecule, in
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Delafosse’s sense, thus behaves just like what we called,
above, a ‘substantial individual’. Anyway, Delafosse next
observes that similar considerations apply in zoology and
botany, where it is after all also customary to discriminate
‘individuals’ from ‘aggregates of individuals’. Some natur-
al historians, he writes, go so far, conversely, as to con-
ceive of the chemical molecules as living beings, that is, as
the smallest possible ones. There is, all the same, an im-
portant difference between plants and crystals, he believes:
with crystals a rigorous mathematical deduction of all pos-
sible forms is feasible, with plants this is not the case. In
the reasoning of Delafosse, it seems to us, we may see the
spirit of the time, since many of his colleagues have
searched for an aprioristic mathematization of the science
of crystals. In the following we shall indeed have to refer
to some of them. Let us conclude provisionally with the
remark that Delafosse considers ‘fivefold’ (quinaire) sym-
metry as a prerogative of the organic realms of nature.

In a tract entitled Investigations of Crystallization from
a Physical and Mathematical Point of View, Delafosse was
to work out his theory (Delafosse, 1843). Performing crys-
tallography without considering Haiiy’s theory he here
compares with performing astronomy in Kepler’s way, that
is, without making use of Newton’s law, which sum-
marizes and explains the heavenly motions. After all, crys-
tallography is not only a mathematical science, but also a
physical one. Therefore one has to include the ‘integrant
molecules’ which constitute the ‘subtractive molecules’,
the latter being the building blocks proper of the crystal.
Now Delafosse substitutes, in the mind, the integrant mo-
lecules of Haiiy by their centers of gravity. He speaks of
‘material points’ which, in the style of his doctoral disser-
tations, constitute the ‘rows’ and ‘monolayers’ that, in
their turn, form the crystal. All things considered, a crystal
becomes a ‘continuous lattice of parallelepipeda’. Haiiy’s
‘subtractive molecule’, then, is nothing but such a paralle-
lepipedon, whose corners are occupied by the physico-che-
mical molecules. Some novelty becomes evident: the small
faces of Haiiy’s ‘subtractive molecules’ are at once clea-
vage planes, while in the new theory these planes pass
through the parallelepipeda. The abovementioned ‘law of
symmetry’ thus not only concerns the external geometry
of the crystal but also the physical properties that come to
light as soon as the geometrically equivalent parts are
compared with each other. In order to be identical there
should be both geometrical and physical equality. Once
again Delafosse stresses that hemihedry, tritohedry and te-
tartohedry are not to be considered as more or less acci-
dental deviations from homohedry. They represent funda-
mentally different things, directly related to the molecular
structure. An example may illustrate this. Delafosse refers
to rock salt and fluorspar which, ever since Haiiy, had
been attributed to the regular or cubic system, although
they never occur in hemihedral forms like the tetrahedron
and the pentagon-dodecahedron. Other cubic substances
like boracite, panabase (a copper pyrite) and zinc blende
(sphalerite), on the contrary, do indeed occur in the tetra-
hedral form, but not in that of the pentagon-dodecahedron
(Figs. 5 and 6). Finally, iron pyrite usually adopts the cu-
bic form, but occasionally occurs as a pentagon-dodecahe-
dron, the tetrahedral form here being completely unknown.

To understand why this is the case, one has to inspect the
molecules and pay attention to their particular symmetry,
which is, naturally, an expression of their physico-chemical
properties.

What was perhaps lacking in Delafosse’s analysis as to
axiomatic rigor was brought in, between 1848 and 1850,
by Auguste Bravais (1811-1863), in some conferences
before the French Academy of Sciences. As a former poly-
technicien Bravais had been involved in navy activities
before being nominated, in 1845, Professor of Physics at
his alma mater. His mathematical interest was aroused by
the publications of Delafosse and the eventuality of an ex-
haustive deduction of all forms of point lattices. In his
first conference he limited himself to point lattices in the
most abstract sense; the word ‘molecule’ is barely men-
tioned, and only at the end (Bravais, 1848). In thought,
Bravais imagines the emergence of such a point lattice
starting from two ‘generator points’, situated at a certain
distance from each other. Both points define a straight
line, upon which he next imagines an infinite number of
points, all at the same distance from each other. In this
way emerges what Bravais calls a ‘row’, characterized by
that constant distance, the so-called parameter. Two of
these ‘rows’ define a plane that may be filled with an in-
finite number of similar ‘rows’, parallel to each other and
at one and the same distance. When the first points of two
‘rows’ are linked by a line, then a new ‘row’ results, more
or less inclined to the ones that already exist. When the
other points, too, are linked in this way a plane ‘lattice’
(réseau) emerges. A parallel piling-up of such ‘lattices’ in
such a way that the first ‘generator point’ of the first lat-
tice will line up with the first ones of the others finally
produces an ‘assemblage’ (Fig. 7). In such an ‘assemblage’
of infinite dimensions with its three ‘parameters’ and its
characteristic angles, the environment of each point, wher-
ever in the ‘assemblage’, is the same. Bravais takes his
‘points’ to denote the centers of gravity of the ‘molecules’
proper, just like Delafosse, to whom he could have referred
in this context. Bravais calls them ‘summits’ (sommets).

Fig.7. The emergence of an ‘assemblage’ of ‘integrant points’ ac-
cording to Bravais. The ‘rows’ OAA’A”..., ABB'B"..., with ‘para-
meter’” OA first constitute a plane ‘lattice’. A stacking of such ‘lat-
tices” following ODD'D" ... produces the ‘assemblage’ which models
the crystal (Bravais, 1848).
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Not unlike any other macroscopic object, an ‘assem-
blage’ may be moved, either parallel to itself, or by turn-
ing it around an axis. When it is shifted in the direction of
one of the ‘rows’ over a distance corresponding to the
‘parameter’ in question, then each ‘summit’ will take the
place just left by another, such that its environment does
not change in the least.

The nature of one and the same ‘assemblage’ may be
further defined by an infinite number of different ‘lattices’,
three of which are to be selected: this troika defines the
‘generator parallelepipedon’ and at the same time the
‘kernel’ of the ‘assemblage’, the ‘kernel’ taken in the sense
of Hally. When those parallelepipeda are ranked together,
the ‘assemblage’ will be the result.

Generally speaking, within a ‘lattice’, the choice of a
‘generator parallelogram’ is completely arbitrary (OAPB,
OAP'P in Fig.7), although its surface will ever be the
same. The ‘parallelogram’ with the smallest edges, how-
ever, is to be preferred. The mean distance of the ‘sum-
mits’ of a ‘lattice’ will be equal to the square root of the
surface of that ‘generator parallelogram’. In this connec-
tion Bravais refers to Siméon-Denis Poisson, the fore-
most follower of Laplace, who had introduced the notion
of the ‘mean distance of the molecules’ of a substance:
that distance would be the cube root of the volume occu-
pied by one molecule. The experimental determination of
that ‘mean distance’ is perhaps as yet impossible, Bra-
vais argues, but that is at this stage irrelevant. Bravais’
innovations hide in the evaluation of the symmetry as-
pects of the ‘lattices’ and ‘assemblages’, successively. To
begin with the plane ‘lattices’, he defines, in Section III,
‘axes of symmetry’ lying in the ‘lattice’ plane and of
such a nature that a rotation over 180° leads to a coinci-
dence of all ‘summits’ of both halves, the one upon the
other.

Two ‘axes’ are called of the same kind when their en-
vironments are the same and a translation of the one ‘axis’
with its environment suffices to make it coincide with the
other. Therefore, in practice, all ‘rows’ are at the same
time ‘axes of symmetry’, at least in ‘lattices’ in which the
generator parallelogram is a rectangle.

When one introduces new ‘points’ at the centers of the
right-angled meshes of such a lattice plane, a new ‘lattice’
is produced with lozenge-like units. Bravais speaks of
‘centering’. Conversely, the centering of a lattice with
lozenge-shaped meshes produces a right-angled lattice. It
concerns the superposition of two ‘lattices’, of which the
one has smaller ‘parameters’ than the other. The lattice
that results from their superposition, therefore, may repre-
sent two different kinds of crystals.

When we just simplify slightly Bravais’ argument, we
may maintain that in case of a square generator parallelo-
gram the lattice plane features four axes of symmetry
which, in sets of two, are perpendicular to each other. In
case of a regular lozenge generator parallelogram, there are
six axes of symmetry: three axes coincide with the sides
of the triangles that constitute the lozenge, three others are
perpendicular to these.

Reasoning in this way, Bravais arrives at the conclusion
that there are, all in all, four ‘symmetric lattices’, depend-
ing on the form of the generator parallelogram:

(1) that of the regular lozenge (six axes, in groups of
three equivalent);

(2) that of the square (four axes, in groups of two
equivalent and perpendicular to each other);

(3) that of either the lozenge-like or rectangularly
shaped parallelogram or its centered version (two
mutually perpendicular, but dissimilar axes); and

(4) that of the irregular parallelogram (without any
axis).

Bravais continues with propositions about the number
of and the relations between the various ‘point rows’ of
one and the same lattice: these concern axes of fourfold or
sixfold symmetry, which constitute a bunch of parallel
straight lines through the ‘summits’, and pointing perpen-
dicular to the lattice.

What Bravais first derives for the rwo dimensions of
the lattices is next applied to the three dimensions of the
assemblages. Such an assemblage is presented as a surface
of distinct, closed ‘carpets’ which have zero values in their
‘summits’. Bravais next introduces the notation (hkl) to
characterize a whole of parallel planes within the system
of axes xyz’. For these reasons it holds that if 4 = &/a =0
etc. the symbol (001) represents a plane that is parallel to
the plane xy and situated at a distance { = +1c¢ from it; at
the same time it symbolizes all planes parallel to it. If
& = —1c, one writes (001) etc.

For a particular assemblage all generator parallelepipe-
da will have the same volume and it will therefore be im-
portant to choose the one with the smallest parameters.
The ‘mean distance between two summits’, then, may be
defined, in the spirit of Poisson, as the edge of a cube
equal to the unit volume divided by the number of sum-
mits per unit volume.

In order to obtain the various so-called symmetry ele-
ments in the assemblages, Bravais imagines two mutually
identical assemblages, one of which remains at rest while
the other may be moved to see in which ways it may be
brought to coincide with the first one. The Frenchman
considers two possible motions: translation and rotation.
Next he distinguishes ‘axes’ of two-, three-, four- and six-
fold symmetry, which reproduce the resting assemblage
after rotations over 180, 120, 90 and 60°, respectively.
There are said to be just four such axes, not more.

Two equilateral axes, of which one is situated in the
stationary assemblage and the other in the mobile, are of
the same kind if a translation suffices to make the mova-
ble axis coincide with the resting one. Finally, there will
also be ‘planes of symmetry’, so-called mirror planes that
split the assemblage in two halves, such that each summit
on the one side will have a homologous point on the
other.

Next follows an analysis of the different forms of what
Bravais calls the binary, the ternary, the quaternary, the
senary and the terquaternary symmetries, which leads to
the following classification of assemblages, more or less
in order of decreasing symmetry of the generator parallele-
pipedon (see Fig. 8):

5 Bravais, it is true, writes (ghk), but since it concerns evidently
the ‘indices’ that Miller had proposed in 1839, we stick to the latter’s
notation.
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Fig. 8. One of the first graphic representations of the seven crystal
‘systems’ with their derived ‘centered’ forms (to be read, from the
upper left, in alphabetical order: a, b etc.). Together they constitute
the 14 ‘space lattices’. When the various ‘axes of symmetry’ and
‘mirror planes’ are applied to them, there result 32 crystal ‘classes’
(source: Niggli, 1920; the order has been adapted to Bravais’ deduc-
tion).

(1) the terquaternary symmetry (right-angled prism, 8a;
body-centered cube, 8b, and face-centered cube, 8¢);

(2) the senary symmetry (right-angled prism with an
equilateral triangle as base, 8d);

(3) the quaternary symmetry (right-angled prism with a
square base, centered, 8g, or not, 8f);

(4) the ternary symmetry (rhombohedron, 8e);

(5) the terbinary symmetry (right-angled prism with a
rectangle as base, centered, 8i, or not, 8h; right-
angled prism with a lozenge as base, centered, 8k,
or not, 8j);

(6) the binary symmetry (right-angled prism with a
parallelogram as base, centered, 8m, or not, 8/);

(7) without symmetry (inclined prism with a parallelo-
gram as base, 8n).

On reaching the end of his considerations, Bravais em-

phasizes that the new doctrine is not just a geometrical
speculation, but nothing other than the true foundation of

crystallography. Ever since Haiiy, he writes, one has impli-
citly or explicitly deemed that the centers of gravity of the
molecules in crystallized materials are distributed like the
‘summits’ in the assemblages of points. His aprioristic the-
ory is confirmed retroactively by an inspection of all avail-
able crystals, of which it is known that there are six dif-
ferent classes of symmetry and one class without any. At
last, we read, all derives from “the polyhedral or, if you
please, polyatomic form” of the molecule proper, which
determines the symmetry of the assemblage. It is also that
form which determines, ultimately, some peculiar phenom-
ena, such as for instance that of isomorphism as discov-
ered by Mitscherlich, and moreover some cases advanced
by Delafosse in which the physical properties co-deter-
mine the symmetry (hemihedry, tritohedry and tetartohe-
dry). ‘Twin crystals’ (macles), too, are important. These
are very meaningful deviations, like those dovetailed crys-
tals of gypsum or the cross-like crystals of sodium thiosul-
fate. Although the ‘polyatomic form’ does not directly
make clear how the dimorphism of, for instance, sulfur,
ought to be understood, it shows nonetheless that it is
something fundamentally else when compared with the
chemists’ isomerism.

Bravais would publish three follow-up articles in 1851.
The first of these treats the crystal as an assemblage of
points. The second is somewhat more concrete in the
sense that the crystal is now presented as an assemblage
of polyatomic molecules. The third one, to conclude, deals
with some peculiar cases, viz ‘twin crystals’ in general and
their hemitropic forms in particular. It suffices here, for
our purpose, to observe that the titles of these three publi-
cations bear testimony to the fact that the ‘points’ of the
new crystallography are indeed meant as the classical mo-
lecules of physics and chemistry. The elegant deductions
of Bravais would be crowned by a systematic investigation
of the precise nature of the phenomenon of symmetry and
of all thinkable ‘symmetry elements’, of which we have
mentioned already the axes and the mirror plane. Some-
what later, one realized that a combination of particular
‘symmetry elements’ sometimes has the same effect as just
one other. In the event it thus became an interesting chal-
lenge to find out, conversely, which combinations apply.
In 1868, such combinations of determinate ‘symmetry ele-
ments’ were baptized ‘symmetry groups’ by the French
mathematician Camille Jordan (1838-1921). According to
the theory of Jordan, which was proposed as an exhaustive
analysis of Bravais’ crystallography, the number of such
‘groups’ had to be, from a mathematical point of view,
essentially limited. The crystallographic consequences of
this ‘group theory’ would be elaborated by some theoreti-
cians, a development that came to an end in the 1890s.
We shall come back to this below in Section 5.

The moment has come to leave France and to cross the
Rhine to the other focus of crystallographic and mineralo-
gical interest in the notion of ‘symmetry’. Let us conclude
therefore by putting on record the fact that, at the end of
the 19th century, French crystallography began renouncing
the molecular theory. One of the latest great theoreticians
of ‘symmetry’, Pierre Curie (1859-1906), had to note this,
much to his regret, in some Remarques sur la Cristallo-
graphie [...], an article published in 1893. On that occa-
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sion he argued that the molecular hypothesis, which had
been so fruitful in the physical gas theory and in stereo-
chemistry, enabled one moreover to work out the most
general and complete analysis of crystalline structure in
the context of the crystallography of Bravais and Jordan,
and so in such a way that it was possible to account after-
wards for the geometrical exterior (Curie, 1893). The read-
er, then, expects Curie to conclude that only to his own
disadvantage the crystallographer could deny himself the
practice of such a useful tool. Curie, however, does not go
that far, although he appears familiar with the recent work
of the principal theoreticians (Sohncke, Fyodorov and
Schoenflies). He could perhaps have been somewhat more
spirited in his defense of the molecular approach, in our
opinion. Curie’s aloofness seems at any rate supplemen-
tary evidence for the existence of an atmosphere of scien-
tific arbitrariness in France, an atmosphere that was main-
tained by Marcelin Berthelot, the mighty chemist who had
made a speedy career in politics and who, once minister
of national education, would abuse his term to enforce his
own scientific ideas upon the French high-school and uni-
versity curricula. Some of Berthelot’s scientific contempor-
aries, however, were courageous enough to publicly op-
pose his ideas. In particular, the organic chemist Charles
Friedel (1832-1899) may respectfully be mentioned in
this connection.

4.2 The German school

Generally speaking, the concept of symmetry has been
very fruitful in the German mineralogical and crystallogra-
phical tradition, although in quite another way than in the
French one. The Germans more particularly assessed the
outward geometrical appearance of the crystal, just as it
presents itself to the observer. From 1815 to 1830 various
attempts aiming at an exhaustive classification of the crys-
talline forms using this key concept had already been re-
ported. The great inspirator was Christian Samuel Weiss
(1780-1856), although his personal contribution was a
rather limited one. It was Moritz Ludwig Frankenheim
(1801-1869) and Johann Friedrich Christian Hessel
(1796-1872) who first realized that, notwithstanding the
seemingly endless disparity, there are limits as to the geo-
metry of crystals, and that a rigorously strict deduction of
the distinct possibilities in terms of symmetry was a feasi-
ble enterprise. This concerned here deductions wholly dif-
ferent from those of Haiiy. The latter had focused, it will
be recalled, upon the number of secondary forms within
the same species, a number that he calculated on the hy-
pothesis that the number of allowed decrescences was
itself limited. So we know, for instance, of detailed calcu-
lations on calcareous spar. However, according to his suc-
cessor Delafosse — as an acknowledged authority en-
dowed with a subtle feeling for historical justice — the
German crystallographers promulgated a generalized doc-
trine and a complete classification at a moment when his
boss, Haiiy, busied himself with adapting the facts to his
theory and lost himself at last in ever more detailed dis-
tinctions.

We here propose to give a general account of the crys-
tallography of Weiss and his school, a crystallography that

was based on the notions of ‘axis’, ‘zone’ and ‘symme-
try’. Weiss had studied medicine, chemistry and physics
under Klaproth, in Berlin. There, in Berlin, he had made
the acquaintance of Dietrich Karsten, the Director of the
Royal Mineralogical Cabinet, who suggested him to trans-
late Haiiy’s Traité de Minéralogie that had just appeared
from the press. Weiss was enchanted and aquitted himself
with full honors of the task. He not only made a faithful
German rendering of the text, but added an extensive com-
mentary, more particularly an assessment of the precise
nature of the crystallization process. In that commentary
he rather sharply criticized Haiiy’s views, proposing in-
stead a theory of his own, in which the ‘idealism’ of what
we named Naturphilosophie in the foregoing prevailed.
Weiss even visited Hailiy in imperial Napoleonic Paris; that
was in 1806. In the French capital he also made the ac-
quaintance of Claude Louis Berthollet, the leading French
chemist, and of Jean-Francois-Marie Brochant de Villiers
(1772-1840), a mineralogist who, later, was to translate
Weiss’” doctoral dissertation into French. That thesis was
entitled De Indaganda Formarum Crystallinarum Charac-
tere Geometrico Principale, which we may translate here
as On the Principal Geometrical Character of Crystal
Forms that Ought to be Studied.

In this dissertation, read in 1809 on the occasion of his
nomination as Professor of Physics at Leipzig, Weiss first
acclaims the work of Haliy and Romé de I'Isle before ex-
posing the headlines of the theory of the integrant mole-
cules (Weiss, 1809). Next he deals with the geometry of
the various polyhedra: there is a section on the regular
sexangular prism, others are devoted to parallelepipeda in
general and the rhombohedral one in particular. In the sec-
ond part of the dissertation, about the physical aspects of
the crystallization process, Weiss introduces the notion
‘axis’ (Weiss, 1809, p. 42):

“An axis [...] is a line that dominates the whole of the crys-
tal form and around which all parts are uniformly arranged.”

The emergence of a rhombohedron, an octahedron or
another of the fundamental forms, then, may be explained
as the consequence of the differences with respect to such
an ‘axis’ between upper and lower parts, on the one hand,
and between lateral parts, on the other. In practice there
appear to exist different ‘axes’ which characterize those
fundamental forms. In Weiss’ words they refer to (Weiss,
1809, p. 44):

“the directions in which the forces principally work that im-
pose themselves when [it is time that] a form is produced
[during the crystallization proper].”

When one observes, to be more concrete, an oversatu-
rated solution that is cooling down, initially nothing oc-
curs. At a particular moment, however, a first little crystal
shows up, Weiss continues, and the observer witnesses a
growth process in different directions. These directions are
straight lines that indicate where the planes will appear
that together will constitute the fundamental crystal poly-
hedron. Mostly, the numerical ratio between such ‘axes’,
and therefore, Weiss believes, between the ‘forces’ in-
volved, are not expressed in integral numbers, but seems
to concern square roots. The author, enraptured with his
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own train of thought, next asks himself more or less rhet-
orically whom of his readers, in this context, would not
directly think of Kepler’s laws. This reference is not elabo-
rated, but probably concerns only Kepler’s third law, the
one that stipulates that the ratio of the square of the time
of revolution of a planet to the cube of its mean distance
is a constant. It might be indeed, Weiss continues, that
one of the forces obeys a square-root law, the other fol-
lowing a cubic root. “Why not, indeed?” the reader might
ask the author. The necessary measurements and calcula-
tions remain in the dark, however. Weiss carefully avoids
entering into such nasty details, but nonetheless does not
refrain from triumphantically claiming (Weiss, 1809,
p. 46):

“What would one say when it becomes evident that the same
forces that regulate the distances and the motions of the pla-
nets henceforth also determine the formation of terrestrial
matter?”

All things taken together, the benevolent reader under-
stands the despair of Delafosse before such texts full of
question marks and overflowing with “idle subtleties” and
“vague and obscure explanations” (Delafosse, 1843).

In 1814 Weiss was perhaps still a supporter of ‘dyna-
mism’, the doctrine of forces current in Naturphilosophie,
rejecting in the same mood Haiiy’s molecular theory; his
style and outlook, though, had greatly changed. In his
Surveyable Presentation of the Various Natural Divisions
of the Crystallization Systems, a lecture dated 14 Decem-
ber of that year, before the Royal Academy of Sciences
of Berlin, he only gives a new principle of classification,
that of the crystal ‘axes’ (Weiss, 1814). The simplest
case is that of three identical and mutually perpendicular
axes, Weiss begins; the ‘system’ in question is called the
‘spherohedral’. The basic forms are the octahedron, the
cube and the lozenge-dodecahedron. When upon the faces
of these forms pyramids are placed, derivative polyhedra
are obtained composed of equal facets. Generally speak-
ing, the number of facets of a convex polyhedron will not
exceed 48. Enlarging the number of facets produces poly-
hedra that come closer and closer to the circumscribed
‘sphere’; hence the name ‘spherohedral’ for the ‘system’
as a whole. Mostly, all faces are equally well developed,
but there are also crystals which feature only half of the
expected number. When all faces are similarly present, the
crystal is called ‘homospheroidal’; when only half of them
are there, the crystal is named ‘hemispheroidal’. The latter
group may be further divided into tetrahedral and penta-
gon-dodecahedral forms.

In the other ‘systems’ at best two of the three axes are
the same, one of the ‘systems’ being characterized by four
axes. In the latter case, three of the axes are situated in the
same plane and cut each other at one point, making angles
of 60°; the fourth axis passes through that point and
stands perpendicular upon the plane of the other three.

Weiss’ classification is at once semi-empirical and rig-
orous in the sense that it takes into account what is found
in nature before deducing which ‘systems’ correspond to
those data. In the long run it was to take the place of
Hatiy’s more intuitive division. In fact, Weiss’ classifica-
tion is essentially still the current one. It concerns the sim-

plest cases of Fig. 8, more precisely the uncentered forms.
When the three axes are equal and mutually perpendicular,
we have the ‘regular’ system (Fig. 8a—c). When two are
equal and the third deviates, we have the ‘tetragonal’ sys-
tem (Fig. 8f and g). When all three axes are different, but
nonetheless mutually perpendicular, the system is called
‘orthorhombic’. Inspection of the angles teaches the fol-
lowing. One of the angles may be unequal to 90°, but also
all three of them: this applies for the ‘monoclinic’ and the
‘triclinic’ system, Fig. 8(/) and (m), respectively, and 8(n).
In the case of four axes, the fourth, perpendicular one is
the foremost: when it is equal to the three others, then we
have the ‘rhombohedral’ system, if it is unequal the sys-
tem in question is called ‘hexagonal’ (Fig. 8d). For clarity,
we use modern nomenclature (which stems from Axel Ga-
dolin; see below), although the derivation was that of
Weiss.

Later, in 1817, Weiss would attempt to denote more
exactly the faces of a crystal. Haiiy had related them to
the ‘kernel’. A new face, for instance, was always de-
fined in terms of its decrescences with respect to the
‘kernel’ face in question. Weiss objects to this view,
maintaining that one and the same facet sometimes may
result from different decrescences, while the converse, viz
that different faces are defined by the same decrescences,
may also occur. In his view it is better to define faces
with respect to a system of axes and to completely aban-
don the notion of ‘primitive form’ or ‘kernel’, since then
it suffices to indicate the ratio of the segments cut from
those axes in a rectangular system by the faces. In a
system of three axes a facet of an arbitrary octahedron
may be symbolized by the ratio a:b:c. When two axes
are equal we get a:a:c for the octahedron with a square
as cross section. In the very same way a:a:a symbol-
izes a plane of a regular octahedron. Each arbitrary plane
may be summarized as such. So a:b:ooc symbolizes an
arbitrary plane parallel to the ¢ axis, while a:oob:ococ
stands for a plane perpendicular to the a axis. To indi-
cate the various octants of an orthogonal system of axes
Weiss proposes the use of primes: o, then, is situated
opposite to a and the plane symbolized by da':b':ooc
thus is opposite and parallel to the plane a:b:ococ. In
this way, a group of planes parallel to one and the same
axis and cutting each other in parallel lines may be re-
cognized, on paper, by the proportions that hold for
them. Such a group of planes has a particular status in
the context of Weiss’ approach. He speaks of a ‘zone’;
the common axis is called the ‘zone axis’. In a particular
crystal ‘system’, then, the wholly determined ‘zones’ of
the primitive form define, together, the in principle possi-
ble secondary facets and in so doing the secondary
‘zones’. Each and every polyhedron now can be charac-
terized by a combination of such proportions. In the
‘regular’ or ‘cubic system’ it suffices to specify just one
face; the proportion a:a:a, for instance, symbolizes not
only one face of the regular octahedron, but at the same
time that octahedron as a whole. This new approach of
crystallographic polyhedra presumed that there ought to
be a geometry in which the interfacial angles are brought
in relation with the characteristic proportions of the
faces. Weiss himself hinted at this possibility in an arti-
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cle of 1820. His student Franz Ernst Neumann (1798-
1895) would expand the idea. In 1823, Neumann’s Bei-
trdge zur Krystallonomie had appeared. Three years later
he passed the PhD under Weiss on a dissertation entitled
De Lege zonarum [...] or On the Zone Law |[...]. Neu-
mann not only proposed some improvements in the cal-
culations of his supervisor, but seized the opportunity to
derive from them two graphical methods, so-called pro-
jections, to summarize the spatial relations of the facets
of a crystal species in one single characteristic scheme.
We will discuss his procedure using vesuvianite,
Cajp(Mg,Fe), Al4[(OH)4(Si04)5(Si,07),], as an example
(Fig. 9).

Such a crystal may be conceived of as a polyhedron
that emerges when families of planes of well defined
‘zones’ happen to intersect: each facet of such a crystal,
then, is determined by the intersection lines of the families
to which it belongs. The idea is now to represent the poly-
hedron as a whole in a projection scheme. Therefore we
imagine ourselves in the middle of the crystal that is to be
characterized, at a point upon the principal axis. Then, we
displace all the planes of the facets of the crystal in a
parallel way such that they pass through that point. These
planes will intersect a so-called projection plane, above
the crystal and perpendicular to the principal axis, in
straight lines. So the group of facets parallel to the princi-
pal axis, which constitute a ‘zone’, will become visible

i
'
i

Fig.9. The technique of the ‘linear’ projection of Neumann illu-
strated using a vesuvianite crystal as an example. We choose a sys-
tem of axes including the principal one, such that the origin coincides
with the center. The principal axis is simultaneously the ‘zone axis’.
Then we move all the facets parallel to it — facets that together con-
stitute the ‘zone’ — such that they pass through that ‘zone axis’. Ob-
viously, parallel facets will coincide. The displaced planes cut the
horizontal projection plane above the crystal in the form of a fan-
shaped star through the intersection point of the ‘zone axis’. The other
‘zones’ that determine the nature of the crystal manifest themselves as
groups of parallel lines. Since, in our case, the a and b axes are
equivalent, given the geometry of the vesuvianite crystal, we use two
a’s in characterizing the proportions. In the indicated fan we therefore
find back the intersection lines of the following facets: a:ooa : ococ,
a' :ooa:ooc, coa:a:ooc, ooa:d 1ooc, ataiooc, did e, ad :ooc
and d':a:ococ.

d

Fig. 10. The ‘linear’ projection of a vesuvianite crystal made by Neu-
mann (Neumann, 1823, Table IV).

upon the projection plane as a fan of lines through the
center of the projection. Other ‘zones’ show up as arrays
of parallel lines. In the scheme that results (Fig. 10) the
intersection points of two ‘zone lines’, indicated by small
circles, symbolize a plane that belongs to both ‘zones’ at
the same time.

The distances between the lines of a particular ‘zone’
naturally reflect the magnitude of the corresponding inter-
facial angles etc. This graphical technique for representing
the proper nature of a crystal species was called ‘linear
projection” by Neumann. He merely outlined it in his trea-
tise of 1823. Later it was elaborated by Friedrich Quen-
stedt (1809—-1899).

Neumann’s second method for characterizing a crystal
species was named the ‘spheric’ or ‘stereographic’ projec-
tion. The crystal in question is imagined at the center of a
great sphere, such that both centers coincide. Then per-
pendiculars are drawn from that center upon the facets of
the crystal; they are extended until they cut the sphere
(Fig. 11). Next, the intersection points at the sphere are
connected with the sphere’s south pole. The connecting
lines will pass through the equatorial plane, which is to be
used as the new projection plane. The facets of one and
the same ‘zone’ will feature on the sphere as dots upon a
great circle, a circle that, in the projection plane, will nar-
row down to an ellipse around the center.

The ellipse in question, then, will be more flattened the
closer the ‘zone axis’ approaches to the horizontal plane,
and more circular the closer the ‘zone axis’ is to the prin-
cipal axis (Fig. 12). This ‘spheric’ or ‘stereographic pro-
jection’ has the advantage that all crystal facets appear
finally as dots within the equatorial circle; in a ‘linear pro-
jection’, by contrast, some facets may in particular cases
escape from the paper surface as used for the diagram. It
is worth mentioning, finally, that each triangle formed by
three projection dots is related to a spherical triangle on
the enveloping sphere, which, in its turn, refers to crystal
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Fig. 11. The ‘spheric’ or ‘stereographic’ projection technique of Neu-
mann applied to a vesuvianite crystal. The perpendicular drawn from
the center upon a facet (or upon the plane in which it is situated)
meets the circumscribed sphere at a point, which is, subsequently,
linked to the south pole of the sphere. This produces a dot in the
circular projection plane defined by the sphere’s equator.

facets that come together in a trihedral angle. It is hardly
necessary to say that Neumann’s ingenious examination
markedly simplified both research and education in crys-
tallography. The experienced crystallographer got a handy
new tool at his disposal to characterize known crystal spe-
cies and to wholly identify newly discovered ones, while
the student had fewer problems in bridging the gap be-
tween mostly familiar, classical stereometry and the new
world of crystalline polyhedra. It is important, then, that
the crystal-specific scheme be determined as accurately as

Fig. 12. The ‘spheric’ or ‘stereographic’ projection of a vesuvianite
crystal according to Neumann (Neumann, 1823, Table IV). Each crys-
tal facet is symbolized by a tiny roundel — the dots of Fig. 11 —
either upon or inside the projection circle. The roundels of one and
the same ‘zone’ all lie either upon that circle, or upon an ellipse of
varying width. For simplicity’s sake these ellipses are represented by
cutting arcs of a circle.

possible, such that, during practical fieldwork, it could be
used for the identification of either disformed or incom-
plete specimens. After all, on expedition in the field, the
measurement of a limited number of interfacial angles suf-
fices to see whether there are one or more zones and next
to calculate the direction of the ‘zone axis’ or ‘axes’,
which at once provides the numerical proportion between
the crystal axes. In practice this implies that the geometri-
cal nature of a crystal and the ‘system’ to which it per-
tains may be easily established. An investigation of the
physical properties, then, makes up the last step in the
identification of a crystal.

For the most part, the identification of a mineral hardly
posed a problem, but there remained some difficult cases.
Above we have already mentioned the reticence of Gab-
riel Delafosse before what was called ‘hemihedry’. The
Frenchman had felt obliged to explain this phenomenon in
terms of molecular symmetry; others had tried to interpret
it by elaborating the concept of symmetry on the macro-
scopic level, that of the outward appearance of the crys-
tals. History has handed over to us a number of successful
attempts, but most unfortunately these passed unnoticed
and were largely forgotten long before they could bear
fruit. We mean the attempts of Frankenheim (1826) and
Hessel (1830). These crystallographers deduced, more than
twenty years before Bravais, the different crystal ‘systems’
and their principal subdivisions on the basis of macro-
scopic considerations. They arrived, indeed, at seven ‘sys-
tems’ as the heading under which the 32 crystal ‘classes’
could be summarized. In order to give an impression of
such a deductive approach we would like to reproduce
here the main line of that of Hessel. Hessel’s technique is
the more interesting because he, unlike the adherents of
the ‘dynamism’ in the spirit of Weiss, was not in principle
opposed to the molecular theory. To this adds the fact that
he chose Haiiy’s 1815 article on the role of symmetry as
his starting point: he himself had taken care of a German
translation. For that reason, he, Hessel, could have been
useful as some kind of trait d’union between the German
and French crystallographic communities, if not between
France and the rest of the world. On this point, too, Dela-
fosse appears an equally trustful and righteous witness
where he maintains that the molecular theory, as if it were
a French monopoly, divided the crystallographic world
into two camps. It is indeed remarkable to notice that
Great Britain which, at the beginning of the 19th century,
had had in Dalton a most impressive partisan of the mole-
cular theory, was to join the German school. William
Whewell (1794—-1866) and his successor, since 1832, in
the Chair of Mineralogy at Cambridge, William Hallowes
Miller (1801-1880), for instance, profiled themselves pre-
ferably in the German tradition, that of Weiss, Neumann
and Mohs. Hessel thus could have brought about, when
we may again believe Delafosse, the long expected synth-
esis (Delafosse, 1840). However, in Delafosse’s eyes, the
notation that Hessel used to express his ideas was so bi-
zarre and his language so abounding with neologisms that
but few people were able to follow him.

Hessel developed his views in an article entitled Krys-
tal that was to be published in the multivolume Physi-
kalische Worterbuch, edited by Johann Gehler (Hessel,
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1830). The article opens by mentioning that the abstract
study of space figures is but a young science, whose foun-
dations have not yet been fully explored. Then Hessel dis-
cusses the peculiarities of plane figures with respect to a
line perpendicular to the plane under consideration. If the
situation is such that a particular figure p may adopt dif-
ferent positions with respect to such an axis, the result is a
“plane system of rays of p members,” p being 1, 2, 3, 4 or
6. To this one can add that a figure with p members may
be identical, or not, to its mirror image. The relation be-
tween three-dimensional objects may also be described
with respect to such an axis, which is in practice a ‘rota-
tion axis’ (Umdrehungsnormale).

When the two extremities of an axis of order p are equal,
but not each other’s mirror image, then such an axis is
called ‘bifinal and conformal’ (ebenbildlich 2endig). In the
first case it may be either ‘equipositional’ (gleichstellig),
or not. When such an axis happens to be ‘equipositional’,
then both endings are not only ‘conformal’ but also each
other’s mirror image, or only each other’s mirror image
without being ‘conformal’. When, on the contrary, the axis
is not ‘equipositional’, then there are three possibilities for
both extremities, namely:

(1) they are only each other’s mirror image;

(2) they are both each other’s mirror image and con-

formal; or

(3) they are only conformal.

Finally, if such an axis of order p is ‘bifinal and con-
formal’, both endings may be exchanged or not.

The subdivision of the space polyhedra that results em-
braces, to a first approximation, two groups, of which one
is characterized by four axes of order 3 and the other by
ten axes of order 3. The first group has five subgroups, of
which No. 1, for instance, corresponds to the so-called
‘spherohedral’ or regular crystals of Weiss. The other
group, with its ten axes of order 3, has two subgroups. All
in all, we thus have seven subgroups, neatly corresponding
to the crystal ‘systems’ of Weiss, and superimposed — be-
cause of the rationality of the axis’ order, p — a further
subdivision in ‘classes’, making a total of 32.

The considerations of Hessel concern first of all the
space polyhedra in general. It is only in a second approxi-
mation that they focus upon the natural, that is, the crystal-
line, polyhedra. The symmetry elements made use of are
the mirror plane, the inversion point, and the rotation axes
of order 1, 2, 3, 4 and 6, just like in Bravais’ later approach.
The successors of Bravais will, still later, try out all possi-
ble combinations of symmetry elements, a development
that would culminate, in the 1890s, in a complete solution.
In the interim, one of the projection methods of Neumann,
the ‘stereographic’ one to be precise, was to be expanded
by Whewell’s successor at Cambridge, Miller, in the latter’s
Treatise on Crystallography (Fig. 13). Miller understood
that Neumann’s techniques enabled the application of sphe-
rical trigonometry to indicate the relative positions of the
crystal facets and to relate these with the interfacial angles
in question (Miller, 1839). For reasons of simplicity he
substituted those interfacial angles for the angles between
the perpendiculars on the facets involved; the two angles
are complementary, so there is no problem. What counts in
this mode of projection are just those perpendiculars and
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Fig. 13. Title page of William H. Miller’s A Treatise on Crystallogra-
phy (1839) (courtesy: University Library, Leiden).

their intersection points on the enveloping sphere, the latter
determining the dots in the plane of projection.

Miller also introduces a new system to indicate the par-
ticularities of crystal facets in a suitably chosen system of
coordinates xyz in an equally short and practical way. That
system of coordinates simply concerns the three intersec-
tion lines of three groups of either mutually parallel crys-
tal faces or potential cleavage planes. The relation be-
tween two facets, the cleavage planes included, then, may
be expressed in proportions such that a plane parallel to
one of the groups of planes of the system of coordinates
gets the ‘index’ O for the third axis instead of oo (Fig. 14).
In this way, for example, a Weiss or Neumann proportion
could be transformed into a triplet of indices.

A plane that, with Neumann, would be indicated as
la:1b:ooc is converted by Miller into a/l :b/1:c/oo be-
fore being abbreviated and written down between brack-
ets as (110). In the same way 2a:1b:ooc first becomes
al2:b/1:cloo, before being multiplied by 2 - giving
la:2b:0c — and at last abbreviated to (120). Miller’s
technique allows one to fix the forementioned perpendicu-
lar on the facets: its direction is after all determined by the
angle it makes with the axes of the system of coordinates.
The ratio of the cosines of those angles happens to be
equal to that of the converted values of the axes’ segments
cut off by the plane under consideration. It further pro-
vides a simple way to calculate the direction of the inter-
section line of two crystal facets and that of the zone axis.
Throughout his booklet Miller only gives the axiomatic
and highly technical part of his crystallography wholly in
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Fig. 14. Three intersecting lines OX, OY and OZ of three groups of
parallel facets or cleavage planes. An arbitrary plane, be it a real or
perhaps an only possible one, meets these axes at A, B and C, another
at H, K and L, respectively. The fundamental law of crystallography,
then, implies that the ratio AO/HO : BO/KO : CO/LO shall be such that
small integer values may be found, the so-called indices h, k and [,
which satisfy the relation (1/4)(AO/HO): (1/k)(BO/KO) : (1/[)(CO/LO).
In Miller’s view these ‘indices’ are never greater that 6. Posterity was

to speak of the ‘law of rational indices’, a law that would take the
place of Haiiy’s ‘decrescence law’ (Miller, 1839, Table I).

terms of ‘indices’. He is conscious, naturally, that the de-
crescence law of Hailly may also be expressed in his ‘in-
dices’. As indicated above, his version of that law would
be known by posterity as the ‘law of rational indices’.
Later the ‘stereographic projection’ of Neumann would be
used by the Finnish crystallographer Axel Gadolin (1828—
1892) in view of a shorthand characterization of the 32
different crystal ‘classes’ (Fig. 15).

Originally composed in Russian, in 1869, his tract was
translated into French and appeared as such in 1871, in
the proceedings of the Academy of Sciences of Helsinki.
This detail is of importance since it was Gadolin’s franco-
phone nomenclature for the seven by now classical crystal
‘systems’ that would become ours. Leonhard Sohncke, a

Fig. 15. The simplified ‘stereographic projection’ of Gadolin for the
homohedral forms of the cubic system: the small triangles and quad-
rangles symbolize rotation axes of order 3 and 4, respectively, the
ellipses mirror planes (source: Gadolin, 1871). Each of the 32 crystal
‘classes’ has such a specific ‘stereogram’ of its own to characterize
its outward symmetry.

former student of Neumann and one of the most influen-
tial crystallographers of the second half of the 19th cen-
tury, played an instrumental role in all this. It was Gado-
lin’s projection format and his nomenclature together with
Miller’s notation for the crystal faces that later determined
the outlook of descriptive crystallography.

5. Group theory and symmetry; from Jordan
to Schoenflies

In the introduction to his work The Unlimited Regular
Systems of Points [...] Leonhard Sohncke (1842-1897),
Professor of Physics at Karlsruhe, reconsiders, in 1876,
the idea of the space lattice as it had been outlined by
Delafosse and Bravais. His main argument in its favor is
that the classification of those lattices, or properly speak-
ing ‘assemblages’, in terms of symmetry exactly corre-
sponds with the empirically found crystal systems: in both
cases there are just seven. Sohncke is conscious of the fact
that ‘hemihedry’ is only accounted for in hindsight, that
is, in a second approximation; it is as it were masked by
the point molecules in the lattices. Delafosse in his days
had imagined, supported by persuasive figures, that in the
case of boracite the molecules of the ‘tetrahedral’ type pile
up in such a way that either a tetrahedral crystal or a cu-
bic one results (Fig. 5). Bravais did not even ask himself
the question whether molecules of a particular symmetry
could eventually give rise to crystals of higher symmetry.
This does not alter the fact, Sohncke esteems, that from a
methodological point of view his approach seems correct,
for the simple reason that he begins where he ought to
begin, that is, with point lattices. As early as 1862, there-
fore, Sohncke takes over Bravais’ theory. Initially he sup-
poses that the ‘crystal elements’, that is, the chemical
molecules proper or comparatively small congruent aggre-
gates, are parallel. Subsequently, he abandons that condi-
tion as being too restrictive. Exchanging the ‘crystal ele-
ments’ for their centers of gravity, Sohncke articulates the
following hypothesis (Sohncke, 1876, p. 3):

“Crystals are, when they are conceived of as unlimited regu-
lar point systems of infinite dimensions, of such a nature that
in the environment of each point the arrangement of the other
points is equal to that in the environment of any other point.”

The task of the theoretician, then, is “to search for all
regular point systems that are infinitely large in all direc-
tions”. For plane lattices the problem is a simple one, ac-
cording to Sohncke: there it is just pure geometry. For the
space lattices — Haiily and Bravais’ ‘assemblages’ — that
geometrical approach does not work, unfortunately, and a
better one has to be developed. It concerns what Sohncke
calls the “geometry of motion”, of which Bravais gets the
honor of having sketched-in the seminal idea. The obser-
ver here imagines two space lattices, one mobile, the other
stationary, and next evaluates which motions are such that
they make the first lattice coincide in all its points with
the resting one. As possible ‘coincidence motions’ (Deck-
bewegungen) Sohncke not only envisages simple ‘transla-
tions’ and ‘rotations’, but also their combination in heli-
coidal ones. What is striking is that the succession of mo-
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tions in such a combination does not make a difference
and, moreover, that combinations like this, the screw for
instance, represent a specific kind of motion on its own.
This means that those ‘coincidence motions’ are not com-
pletely independent from each other and that they may be
reduced to some elementary motions. In this connection
each regular system of points may be characterized by a
limited number of elementary displacements.

Sohncke next defines ‘groups of motions’ as particular
combinations of elementary motions. The total number of
such ‘groups’ is doubtless infinitely great, but this does
not preclude its being reducible to a limited number of
kinds. The question, then, is to find that set of different
kinds of ‘groups of motions’. With this set in mind, the
characterization of a particular ‘lattice’ implies the deter-
mination of the ‘groups of motions’ that, together, are able
to generate the whole lattice with all its peculiarities start-
ing from just one lattice point.

This was approximately the situation in about 1875,
when Sohncke suddenly discovered that the problem un-
der consideration had already been described, analysed
and solved almost completely by the French mathemati-
cian Camille Jordan (1838-1921), in two articles of 1868
and 1869, published in an otherwise barely known jour-
nal. Sohncke immediately recognized the priority of his
French colleague, but argued that the latter’s treatment had
been too abstract to be practical in crystallography. His
own task in the following thus was to deduce such a crys-
tallographically useful application. Where Bravais had
only considered translations to make the mobile lattice co-
incide with the stationary one, Sohncke — following Jordan
— introduced the rotation and, moreover, the helicoidal
motion as a combination of a translation and a rotation.
Using these three types of motion Jordan had derived 174
‘groups’ of simple and composed motions, corresponding
to as many ‘space point groups’. The first nine of these
174 ‘groups’ concern all kinds of translations, both simple
and composed; ‘groups’ 10—17 are the ‘rotations’; and
‘groups’ 18—174 are all possible combinations of the pre-
vious two, subdivided into six ‘categories’. An evaluation
of Jordan’s division showed Sohncke that some hundred
of these ‘groups’ were redundant, since they played no
role in crystallography. All ‘groups’ implying infinitesimal
motions, for instance, could be discarded, just like those
in which lattices featured that were not infinitely extended
in space. A dozen of the remaining ‘groups’ dropped out
for the simple reason that they had been counted twice. To
the rest of Jordan’s 174 ‘groups’ new, crystallographically
relevant ‘groups’ implying helicoidal motions had to be
added, that is to say screw motions that cover integral
numbers of parts of a translation. Taken all in all, the Ger-
man crystallographer ends up with 54 “infinite, regular
point systems” (Sohncke, 1876, p. 70), which are supposed
to represent from the geometrical point of view all forms
deemed possible for crystalline bodies. Since the “mole-
cules’ law of action” is not yet known, Sohncke argues,
the crystallographer unfortunately is incapable, for the
time being, of indicating which forms may actually exist,
but this is another question. It is clear at any rate that the
seven empirically found ‘systems’ correspond completely
with the theoretically derived ones. The subdivisions of

the ‘systems’, both the practical and the theoretical ones,
allow one to foresee that, in the near future, it will be
possible to indicate for each type of crystal the corre-
sponding point lattice. At this stage it is already obvious
that for cases of hemihedry no accessory hypothesis on
the molecular level is needed, let us say, a hypothesis
similar to those of Delafosse and Bravais. Indeed, there
simply is a particular ‘class’ for those assemblies of points
corresponding to the hemihedral forms of the regular or
cubic ‘system’. Sohncke is otherwise conscious that some
kinds of crystals, e.g. the tourmalines, only manifest half
of the prescribed number of facets. Earlier Delafosse had
stressed the ‘polarity’ of the main axis of the tourmalines,
a ‘polarity’ that shows up on heating the crystal, when
opposed electrical charges appear that concentrate on op-
posite extremities. In fact it concerns a particular instance
of hemihedry, known as ‘hemimorphism’, a phenomenon
only occurring with crystals having just one axis.

Broadly speaking, the anisotropy of crystals is satisfac-
torily explained in the new theory, since a difference in
geometrical direction has immediate consequences for the
mechanical properties. In this connection one could think
of cleavage, hardness, elasticity, thermal conductivity and
solubility. The optical activity of crystals, here, is of
course of particular importance. Sohncke believes that this
is caused by a helicoidal piling of the molecules in the
crystalline aggregate. Recently, he relates, one had noticed
that thin mica sheets, when they are stacked like the steps
of a spiral staircase, produce a whole that is optically ac-
tive: the plane of polarization of polarized light appears to
turn depending on the stacking direction of the sheets. It
is essential, here, that the optical activity emerges from
inactive parts, since the normal parallel deck of mica
sheets, as in native mica, has not the slightest influence
upon plane-polarized light. Sohncke does not exclude for
that matter that either in solution or in the gaseous state
optically active compounds exist in the form of spiralized
molecular groupings (see also below, Section 6). In some
of those cases, too, one had after all noticed an influence
upon the plane of polarization, the angle of rotation being
proportional to the concentration of the active substance
and the length of the light path. Sohncke even knows of
the existence of substances that are optically active in so-
Iution, although losing their activity on crystallization. The
phenomenon ultimately has to be reduced to the ‘nature of
the molecule’ (Beschaffenheit des Molekiils). That molecu-
lar nature after all determines whether or not one can form
tiny spiralized groupings (dissolutions, gaseous state) and,
at a higher level, the crystal structure of the solid state.
Sohncke appears persuaded that his approach will make it
possible to directly relate the structure of a particular kind
of molecule with the way of aggregation in the corre-
sponding crystal form.

In 1879 Sohncke was to conclude his innovations and
brought them together in a general theory on the structure
of crystals. All in all, it concerned 65 ‘point systems’. In
comparing his results with those of Bravais, Sohncke sees
the following advantages. In the first place, it is the sim-
plicity and the persuasive character of the hypothesis of
‘crystal elements’ which enervate all reproaches of arbi-
trariness. The correspondence between theory and practice
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is a second argument, at least as to the ‘crystal systems’:
both lead to seven of them, the seven by now classical
ones of Hessel and Bravais. The new theory, moreover, is
more complete than that of Bravais, which had only reck-
oned with translations; indeed it also accounts for rota-
tions and screw-like motions. As to the phenomenon of
hemihedry, it is more or less presupposed in the new
theory, so that no auxiliary hypothesis is needed. As a last
advantage, Sohncke adduces the phenomenon of optical
activity, upon which a new light is shed.

Posterity would acknowledge Sohncke’s nicely abstract
handling, but recognize at the same time that there are still
two more symmetry elements to be taken into account.
Rotations, after all, may not only be combined with a
translation, as with Jordan and Sohncke, but also with a
mirror plane and an inversion. These latter combinations
were suggested by substances with asymmetric molecules,
known since Van’t Hoff and Le Bel’s 1874 publications.
At the beginning of the 1890s, the mathematical crystallo-
graphers arrived at 230 so-called space groups. The first
who fully succeeded was the crystallographically oriented
mathematician Evgrav Stefanovich Fyodorov (1853—
1919). In 1890, he published his almost complete deduc-
tion, which was based upon the aforementioned article by
Gadolin. Unfortunately, though, it was composed in Rus-
sian and that was the reason why it remained unnoticed.
When, at the end of 1891, the work Krystallsysteme und
Krystallstructur of the German mathematician Arthur
Moritz Schoenflies (1853—1928) came out, Fyodorov was
quick to make a German summary of his original text.
This summary appeared as late as 1895 in Zeitschrift fiir
Krystallographie [...], the leading journal in the field. In
the interim even a third approach had been published in
that journal, one elaborated by the English scholar Wil-
liam Barlow (1845-1934). Barlow had not worked com-
pletely independently, it is true; he had used Sohncke’s
work and knew Schoenflies’ book. Evidently, the idea of a
strictly deductive crystallography, as a kind of applied
mathematics, had won the interest of the scientific com-
munity. What remained as a subject of debate was the ex-
act number of ‘space groups’ and the nature of the consti-
tutive ‘points’; the ‘theory of groups’ as such was by now
a completely accepted branch of mathematics. In the next
section we will see how the notion of ‘point’ evolved fol-
lowing its introduction into crystallography.

6. The status of the points; molecules
and/or atoms

With Gabriel Delafosse we noticed how sensible it is to
substitute the physico-chemical molecules in thought by
their centers of gravity. Those molecules are supposed to
be situated at the ‘summits’ of the ‘meshes’ of the ‘lattice’
that is projected in the crystal. In that substitution, the
influence of contemporary mathematical physics in the
style of Laplace may be seen. In this physics, each materi-
al object — either a molecule, or an aggregate — is con-
ceived of as a point-like center of force, allowing one to
concentrate upon its mass and its gravitation. This is the
‘mechanics of the material point’. One of the great chal-

lenges of that mathematical physics was the problem of
elasticity. The wave theory of light, originating with Huy-
gens but actualized by Young and Fresnel, was based on
the assumption of a light-carrying medium in which the
postulated ‘transversal’ waves propagated. One of the in-
dispensable properties of that medium was an extreme
elasticity. Elasticity as such was already an age-old pro-
blem, also in the molecular tradition. The interest of some-
one like Poisson, for instance, is well documented. For a
review of the debate about the nature and the analysis of
elasticity we gladly refer to the classical and still valuable
monograph of Isaac Todhunter, entitled A History of the
Theory of Elasticity [...] (Todhunter, 1886). We learned
from it that the debate in question continued until the end
of the 19th century, when it became clear that a stationary,
light-carrying ether, even in its simplified form, failed to
account for the phenomena.

By 1840, the crystallographer Delafosse was conscious
of the fact that one had to begin at the molecular level in
order to explain certain deviations within the seven ‘crys-
tal systems’. To explain the demanded physical symmetry
he had felt compelled to exchange the molecules proper
for their ‘representative form’. Within the ‘regular system’
this concerns the cube, the tetrahedron and the octahedron.
With boracite, it is recalled, there arises, as a consequence
of the particular physical symmetry, a certain polarity in
the crystal. The molecular centers of gravity, the points of
the lattice, are ultimately no more than abstract carriers of
physical properties of a particular symmetry. This is, in
our view, almost Bravais’ conception where he attributed
the physical aspects of the observed crystal symmetry to
the ‘polyhedral form’ or, preferably, to the ‘polyatomic
form’ of the molecules. For the rest, he, Bravais, left the
molecules out of consideration and focused upon the
‘points’. One of the first manuals in which both the geo-
metrical and the physical aspects would be assessed on
the same footing was the work Physikalische Krystallogra-
phie [...] by Paul Heinrich von Groth (1843-1927), the
first edition of which appeared from the press in 1876. We
will deal with it in the following.

With Camille Jordan and Leonhard Sohncke, who both
proceeded in the direction indicated by Bravais, the lattice
‘points’ were still the centers of gravity of the ‘crystal ele-
ments’. The latter could be imagined either as the chemi-
cal molecules proper, or as minute aggregates of these.
Those aggregates were otherwise well defined packings
and therefore mutually ‘congruent’, as Sohncke put it.

As far as Sohncke is concerned, it is interesting to no-
tice that his utterances are among the very first manifesta-
tions in the German crystallographic community of a turn-
ing away from a consciously anti-molecular attitude.
Given the versatility of Weiss’ earlier crystallography, that
of the ‘zones’, we should perhaps excuse his obstinacy in
rejecting the molecular theory, the more so since the new
generation of crystallographers would succeed in reconcil-
ing the theory of ‘zones’ with the latest edition of the
molecular theory of physicists and chemists. Among the
physicists there were men like Clausius, Maxwell and
Boltzmann, who investigated the various aspects of the
molecular theory in the context of the kinetic theory of
gases. The chemists, for their part, had never renounced
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the molecular theory and ever since the famous congress
of Karlsruhe (1860) it was central in chemical thinking,
particularly in Germany, where chemistry lived triumph
after triumph. What is striking, then, is that at a time when
French natural science went through an epistemological
crisis as to the status of the molecular and/or atomic theo-
ry, that very same theory finally and almost completely
seduced German physics and chemistry. For all these rea-
sons, the new mathematical crystallography of ‘point lat-
tices’ and ‘groups of motions’, as accepted and elaborated
by successively Sohncke, Fyodorov and Schoenflies, was
a thoroughly molecular science. In Paris it was the sym-
metry theoretician and crystallography expert Pierre Curie
who, crippled by the reigning politico-scientific cohabita-
tion of positivistic inspiration, followed the German ap-
proach, although without publicly taking position.

Apart from the established authorities Schoenflies and
Fyodorov, there was a third specialist, namely the indepen-
dent scholar William Barlow (1845-1934). Barlow liked
to profile himself as a model builder, more or less like his
fellow countryman William Hyde Wollaston, long ago.
Barlow, too, arrived at 230 ‘space groups’ and published
in 1894 an exhaustive deduction of them; in the previous
section we referred to this. The approach of the Englishman
was peculiar to the extent that, in contrast to the other
proposals, he commenced at the lowest possible level, that
of the atoms. His leading idea was the following. If it is
true that the chemical molecules consist of groupings of
atoms, then crystals arise by the piling up of such group-
ings, such that a crystal is basically more an aggregate of
atoms than an aggregate of molecules. In the supposition
that all atoms have the same magnitude, Barlow next de-
duces among other things three kinds of cubic packings,
packings in which the crystallographers of his time doubt-
less immediately recognized the three types of lattice of
Bravais’ regular system (Fig. 16). His model was sup-
ported by the empirical fact that the majority of the com-
pounds XY (X, metal; ¥, non-metal) crystallize in a cubic
form, with a symmetry corresponding to either the first or
the second of the three acknowledged lattices types. Apart
from those three cubic types there are still two other forms
of internal symmetry, viz that in which the base plane is
occupied by a sphere surrounded by six other spheres; in
both cases there arise packings of a hexagonal symmetry
(cf. Fig. 16d). According to Barlow, these two types are
particularly suited for compounds of the general formula
XY>; he mentions H,O and SiO, as examples. As to sili-
con dioxide, Barlow continues, it is most rewarding to see
that one of those hexagonal pilings may have a helicoidal
ordering, either to the left, or to the right. The phenomen-
on of the so-called circular polarization, that is, the optical
activity of quartz, may be directly attributed to it. Rather
oddly, Barlow develops his ideas without the slightest allu-
sion to the historical context or to the ongoing debate
about point lattices and it is, therefore, easy to imagine the
irritation of an otherwise-generous specialist like Leonhard
Sohncke, whose almost complete deduction had appeared
in 1879. Above we saw indeed that Sohncke had envis-
aged a helicoidal ordering of the molecules — in the crys-
talline state, in solution or in the gaseous state — in order
to explain the phenomenon of optical activity.

Fig. 16. The deduction of the three cubic kinds of lattice according
to William Barlow. The packing of white and black spaces, (a), is
used in thought as a rack for white and black atoms. Barlow first fills
the black spaces of the first, the third and fifth rows of the first layer
of the rack, the front layer, and then the second and fourth rows of
the white spaces of the second layer. The third layer is filled like the
front one, the fourth like the second efc. This results in (b). In a
second approach, he fills all the spaces of (a) with atoms of the cor-
responding color; this leads to (c¢). He concludes by filling only one
kind of the spaces of (a), which gives (d) (Barlow, 1883a,b). Packing
(b) represents the body-centered cubic lattice (an envelope of 8 black
atoms surrounds 1 white atom), (c) the normal cubic lattice (envelope 6)
and (d) the face-centered cubic lattice (envelope 12).

Generally speaking, the spherical atomic model also
appears attractive for explaining the occurrence of twin
crystals: in an aggregate of spheres it is very easy to rotate
two halves of a crystal over a particular angle without
changing the number of atoms in the immediate environ-
ment of each of them. Isomorphism is not a problem
either: CaCO3; and FeCOj3 will adopt the same crystalline
form and the minute differences in interfacial angles that
are noticed may be attributed to an unequal shrinking of C
and O atoms. As to the dimorphism of CaCOj3, this stems,
according to Barlow, from very small alterations in the
arrangement of the spheres: such alterations would suffice
to convert the one symmetry into the other.

In Barlow’s model, free atoms all have one and the
same diameter, while they shrink or expand on crystalliza-
tion depending on the atomic species. This explains why
the octahedra of substances from the same cubic system
show slight differences in their angles. Later, Barlow
called upon different laws for the attraction and repulsion
forces to explain these data. A dead-end road, unfortu-
nately, and therefore we do not follow him. From a crys-
tallographic point of view, it was only the spherical form
of the atoms, their variable diameter and their eventual
aggregation that remained of Barlow’s meddlings.

Compared to earlier attempts of Wollaston, in 1812—
1813, the results of Barlow are even more impressive
when one realizes that, with him, the numerical proportion
between the atoms is essential. Where the particles of Wol-
laston had been mere abstractions endowed with a spheri-
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cal, a spheroidal or an elliptical symmetry, the spheres of
Barlow represent concrete atoms, although he had to re-
nounce going into much detail as to the precise atomic
species. The hypothesis of the similar if not identical diam-
eter of each and every atom, interesting perhaps in the
days of Dalton, Berzelius and Laurent, was, however, much
too adventurous. Indeed, in the 1880s the determination of
the relative magnitude of atoms had become a standard
procedure, especially since the elucidation of the Periodic
System of the elements by Mendeleev. The German che-
mist Hermann Kopp, early in the 1840s, calculated such
properties of compounds, with sustained attention for the
so-called specific volume, that is, the ratio between the
molecular weight and the density, the latter measured at
the boiling point, at atmospheric pressure. In the 1860s
Julius Lothar Meyer would attempt such calculations for
the elements, an investigation which brought to light a
periodicity that came very close to that recently found by
Mendeleev. Barlow unfortunately has missed all this; even
for the contemporaneous crystallographers, headed by the
great Leonhard Sohncke, he had remained an outsider.
The German crystallographer nonetheless had been fair en-
ough to react upon Barlow’s publications. In his commen-
tary he showed that the five kinds of internal symmetry as
proposed by the Englishman correspond to some groups
of particular cases of the 65 recognized ‘point lattices’
(Sohncke, 1884). This was not all. The scientific statures
of the Professor of Physics and Crystallography of the
University of Karlsruhe and the solitary independent scho-
lar were perhaps unequal, the issue at stake was a funda-
mental one all the same, particularly from the molecular
point of view. Sohncke argued, for instance, that the atom-
ic spheres’ approach lost sight of the interatomic bond
relations and, in so doing, overlooked the presence of sec-
ondary specific particles, the chemical molecules. Since
the notions of ‘valence’ and ‘molecule’ have proved their
utility elsewhere in chemistry and physics, Barlow should
have explained why they are irrelevant in the solid state.
Another complicating factor is that Barlow’s atoms may
change their volume, a hypothesis which badly needs
complementary hypotheses to make plausible the fact that
CaCO; and FeCO; are isomorphic: why, after all, would
the shrinking of atoms be limited to the atoms of the car-
bonate group? In his answer to Sohncke’s objections Bar-
low is at pains to hide the lack of generality of his theory.
As to the interatomic relations, he refers to the phenomena
of electrolysis, which show, in his view, that particles of
an opposite nature may react at the electrodes without
something happening in the rest of the liquid. Apparently,
a particle can change atomic partner without the chemical
bonding relations between the atoms of the molecule
being affected (Barlow, 1884). In hindsight, the discussion
between Barlow and Sohncke at all events manifests the
weak points of current theoretical crystallography: when
the atoms are indeed the ultimate building blocks of the
molecules and, hence, of the aggregates, in one way or
another their volume and packing have to be accounted
for. From this point of view the crystal lattice of a chemi-
cal compound may be considered as the superposition of a
number of partial lattices, namely of those of the various
atomic species present. The salt hydrates come close to

this model: here two partial lattices may be imagined, that
is, that of the centers of gravity of the salt molecules and
that of those of the water molecules. This interpretation is
supported by the easy way in which salt hydrates split
into salt and water and may be recomposed from these.
Seen in this light, the salt hydrates are no more than a
particular case of the so-called molecular compounds, sub-
stances which in complexity lie one level above that of
the normal atomic compounds. In 1888 Sohncke would
draw the ultimate consequence from this insight and pro-
claim that each and every crystal of a chemical compound
has to be considered essentially as a superposition of as
many partial lattices as there are atomic species. In the
case of variously linked atoms of the same species, there
are as many partial lattices.

In the exchange of ideas between Sohncke and Barlow
there are also resonances of the old debate about the nat-
ure of isomorphism and polymorphism. In the foregoing
we saw, in Section 3, that in the case of isomorphism one
esteemed that all atoms are of an equal or almost equal
magnitude and if perhaps this does not apply for all
atoms, it holds at least for the metals in a series of iso-
morphic salts. On the other hand, the polymorphism of
one and the same substance had suggested that there are
particles of a higher level, the ‘crystal molecules’; the che-
mist Kekulé had weighed this idea. In a more remote past,
Haiiy had considered the occurrence of ‘subtractive mole-
cules’. The hydrates and, for instance, the polyhalides,
too, may be imagined in a similar way. Hence the regular
appearance of the notion of ‘physical isomerism’, the mo-
lecular analog of the now well established chemical iso-
merism, where it is a matter of atomic arrangements alone.
In case of ‘physical isomerism’ the arrangement of the
chemical molecules, be they equal or not, determines the
nature of the ‘crystal molecule’. One could find occasion
in all this to distinguish ‘chemical’ from ‘physical mole-
cules’, a step, though, that would put at risk the doctrine
of the three states of aggregation®. Indeed, as soon as two
such kinds of molecules are postulated, as by Kekulé, the
doctrine of three states of aggregation collapses and there
is no place left for the notion of ‘substantial individual’.

Arthur Schoenflies, the new Professor of Applied
Mathematics at Gottingen, seems to us a model of logical
consistence and profoundness in the sense that, between
the lines of his chef-d’oeuvre Krystallsysteme und Krys-
tallstruktur, he appears fully aware of the exact range of
his ‘point’ concept. According to Schoenflies, a crystal
may be defined as a (Schoenflies, 1891, p. 5):

“[...] solid homogeneous substance, of which the properties
are generally dependent on the direction and vary depending
on such direction following fixed laws of symmetry.”

It is these laws of symmetry which, taken together,
constitute a real ‘law of nature’ (Naturgesetz) of such a
character that in a mathematical way all possible cases
may be deduced in advance. All the same, the crystal is
always a molecular aggregate, Schoenflies claims, in the
first place regarding its physical properties and in the sec-

6 Sohncke considered a similar distinction. His dilemma con-
cerned the gaseous state, particularly that of sulfur.
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ond place, more or less implicitly, regarding the geometry
ar our level. Indeed, he writes, its is the physical behavior
that mirrors “the essential and indestructible character of
the crystalline substance”. In comparison to Delafosse the
emphasis is clearly relocated: where the Frenchman fo-
cused upon the geometry before inspecting the physical
properties, the German radically opted for physics and, in
consequence, for the carriers and ultimate causes of the
corresponding properties.

The extraordinary work of Schoenflies is composed of
two parts. The first assesses the theory of the crystal sys-
tems, their subdivisions and the geometry in the back-
ground. The author here discusses the different ways to
make lattices coincide, the ‘coincidence operations’ (Deck-
operationen), and a way to ‘calculate’ the effects of their
combinations in terms of ‘products’ and ‘powers’. The
concept of group, conceived of in Jordan’s sense, is here
of crucial importance: the group defines the limited num-
ber of ‘coincidence operations’ and their combinations, the
latter being related by the requirement that each newly
invented combination, in terms of its effect, ought to be
identical or at least equivalent to an already acknowledged
combination. Using his peculiar algorithm Schoenflies
thus arrives at the 32 traditional ‘crystal classes’.

In the second part of his work Schoenflies develops his
theory of crystal structure. This theory appears to be based
upon the ‘generally accepted’ hypothesis, viz that of the
molecular constitution of matter, and envisages establish-
ing which crystal structures are compatible with it. In this
context the concept of molecule is of the utmost impor-
tance, since it depends on the theory that is adopted.
Chapter 1 of this part therefore deals with the various
hypotheses that are in the game. A ‘solid homogeneous
substance’ is described here as a mass of ‘similar indivi-
duals’ (gleichartige Individuen), in other words, of mole-
cules. Somewhat farther, Schoenflies speaks of ‘substantial
individuals’ (substantielle Individuen; Schoenflies, 1891,
p- 237). All things taken together, there are two kinds of
homogeneous substances, that is, amorphous and crystal-
line. The structure of crystalline bodies varies depending
on the ‘laws of nature’ that direct the packing of the ‘sub-
stantial individuals’. Amorphous substances, on the con-
trary, have no regularity whatsoever in their molecular
packings. During the process of crystallization the piling
that emerges will be the simplest possible and adopt a
form characterized by the ‘highest degree of regularity’.
Each resulting ‘crystal molecule’ (Krystallmolekel), wher-
ever in the crystal, is always surrounded in the same way
by the neighboring molecules. This condition is satisfied
when it holds for all the molecules in the ‘sphere of ac-
tion’, that is to say for those molecules that co-determine
the physical behavior. From a mathematical point of view
one abstracts from the real dimensions of the crystal and
considers it as a “regular mass of molecules of unlimited
extension,” which is defined as follows (Schoenflies, 1891,
p. 239):

“a packing of molecules such that it is in all directions infi-
nitely extended, composed exclusively from similar mole-
cules, and possessing the property that every molecule [wher-
ever in the crystal] is surrounded in the same way by the
totality of all the other molecules.”

The point is that, according to the common hypothesis
of most modern theories, a homogeneous crystal in each
and every one of its points carries the character of a regu-
lar molecular packing of infinite dimensions. That equality
of environment may be described in terms of distances
and angles, and thus also comprises arrangements that are
related as object and mirror image.

The aim of a structure theory therefore will be to ex-
plain the geometrical regularity in the physical behavior,
more particularly the homogeneity and the symmetry.
Given the 32 ‘classes of symmetry’, deduced in the first
part of Schoenflies’ work, the task will be to find for all
known or provisionally hypothetical crystals the infinite
packings of molecules endowed with the same homogene-
ity and the same symmetry. The two leading theories, that
of Bravais and that of Sohncke, agree in this respect.
Bravais had started from parallel congruent molecules, of
which the centers of gravity constitute the space lattice. In
such a lattice the homogeneity not only concerns random
points, but also parallel straight lines. Formally speaking,
this requirement is not fulfilled at the level of the atoms
and molecules, since those points and lines are necessarily
parts of the lattice. Nonetheless it is true, at our level, that
the differences in physical properties that may be ex-
pected at the atomic and molecular level are unmeasur-
ably small. For the very same reason one may abstract
from the constitutive parts of the molecules and, as with
Bravais, only reckon with their centers of gravity. When,
moreover, the condition of the parallelism of the mole-
cules is dispensed with, the theory can be generalized. In
order to express conveniently the symmetry in the physi-
cal behaviour, the regular molecular packing is to be de-
duced for each of the 32 classes of geometrical symmetry.
After all, Schoenflies argues, there is no simpler way to
visualize crystal structures than by ordered aggregates of
molecules. This is, in our view, another way to say that,
according to Schoenflies, the molecular model itself is the
simplest possible and hence exclusively suited to express
the physico-chemical character of a substance (Schoen-
flies, 1891, p. 247).

Having arrived at the final pages of his monograph,
Schoenflies evaluates the relative merits of the theories of
Bravais and Sohncke, the first of which is characterized as
primarily a lattice theory of crystallographical origin, and
the second as a structure theory of a mathematical imprint
(Schoenflies, 1891, p. 612ff.). Sohncke’s approach, at this
stage, seems much more general than that of Bravais. The
latter, however, is far more simple and easy to imagine,
since it is of an exclusively molecular nature and enables
the crystallographer to account for all physical and che-
mical properties of the substance in question. To this one
adds that the crystallization proper as a time-dependent
process can only be visualized in terms of molecules.
This mechanical problem is left out of consideration by
Sohncke and his followers, but it constitutes a real pro-
blem all the same. Therefore it would be interesting to
know, Schoenflies continues, how precisely a physicist
like Sohncke views those molecules. Whatever Sohncke’s
details, it surely is insufficient to merely construct a geo-
metrical image of the molecular nature of crystals. We
also stand in need of an exact analysis of the symmetry
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relations in order to appreciate the intrinsic value of a the-
ory. In practice this means that the space lattice has to be
determined of some crystal species of which it is easy to
see in advance to what crystal ‘class’ it belongs. In order
to succeed, the physical properties have to be studied.
Schoenflies gives the example of quartz, which without
doubt belongs indeed to one of the ‘classes’ of the hexa-
gonal ‘system’. With the purpose of rendering plausible
the influence of this crystal species upon plane-polarized
light (circular polarization), Sohncke had proposed, in
1879, a helicoidal ordering of the molecules, either to the
left or to the right, a presentation that nicely squares with
the outcome of Schoenflies’ own analysis. The advantage
of a structure theory like that of Sohncke is, according to
Schoenflies, that it also accounts for the existence of the
two known kinds of quartz crystals, called ‘enantiomorphic’
forms because of their interrelation as mirror images.
Sohncke’s approach, moreover, has no problems with the
latest novelty, the ‘asymmetric’ molecules of Pasteur, Le
Bel and Van’t Hoff.

At the beginning of the 20th century, then, any crystal-
lographer who took himself seriously had a collection of
230 models at hand to classify the polyhedral specimens
of his crystals or, better, the ‘point lattices’ of these. From
the molecular point of view these ‘points’ were the cen-
ters of gravity of the ‘substantial individuals’ in the sense
of Schoenflies. For those who, like Barlow, Sohncke and
Groth, preferred to start at the level of the atoms, it was
important to distinguish as many equivalent partial lat-
tices as there were atoms in the molecules in question. In
the daily practice of crystallography this implied that one
had to content oneself with the 32 classes of external
symmetry. There simply was no way to go farther, even
though one knew that there was more. Very soon a new
technique came up which gave an almost direct access to
the building blocks of the crystals, that is, the atoms, an
invention which, all of a sudden, made an exhaustive ver-
ification of the 230 space lattices a daring but realistic
task.

7. Rontgen’s radiation and the breakthrough
of lattice theory; Laue and co-workers

In 1912, Max von Laue (1879-1960), a former student of
Max Planck, who had been nominated Professor of Theo-
retical Physics at the University of Munich, had the lucky
inspiration to direct a beam of Rontgen’s radiation at a
crystal. The guiding idea was that the wavelength of the
new radiation in all probability had to be extremely small,
to judge from its huge penetration and ionization power.
That it could perhaps also be a stream of particles was
otherwise not excluded at all, at least for the time being.
A preliminary calculation showed that, in the undulatory
hypothesis, the wavelength had to be of the same order of
magnitude as the diameter of the physico-chemical mole-
cules. Laue had reasoned in the following way. For an
arbitrary substance having at 0 °C and 1 atm a density of
ogcem™ and a molar weight of M g, the molar volume
will be equal to M/ cm?. Since the number of molecules

per mole, Ny, is known7, M/oN,4 will be the volume of one
molecule. For a substance crystallizing in the cubic system
like zinc sulfide, the mesh of the lattice will be equal to a
molecule of cubic form, whose edge thus is (M/oN4)'. In
this way Laue obtained for ZnS with o =4.06 gcm™3,
M =974 g and Ny = 6.20 x 10> for the edge of its cubic
molecule {97.4/[4.06 x (6.20 x 10*>)]}'* =3.4x107% cm.
On the other hand, the wavelength of Rontgen’s radiation,
if its wave character was taken for granted, had been esti-
mated on spectral grounds at about 10~® cm. That molecu-
lar cube’s edge was just the distance between the centers
of gravity of two neighboring molecules when they are
neatly piled up in the crystal. Such a piling reminded
Laue of a three-dimensional analog of the flat line grat-
ings of classical optics. Since the revival of the wave theo-
ry of light, through the efforts of Young and Fresnel, the
most spectacular experiment, that of interference, had been
studied in a great variety of ways, most of all with the
help of glass diffraction gratings of parallel lines. Because
of the extraordinary precision that had appeared attainable
in the production of such gratings, the wavelengths, too,
had been measured with extreme precision. The main ar-
gument of Laue, then, was the fact that double gratings
had been tried out, gratings, that is, with mutually perpen-
dicular series of lines. He himself had just finished an
exhaustive review article on wave optics, meant for the
duly famous Encyclopaedie der mathematischen Wissen-
schaften [...], that magisterial overview of the physical
and mathematical sciences of the years 1898—1926. With
crossed gratings, one had established, the interference did
not show up in the form of parallel light and dark fringes,
but in the form of tiny quadrangular spots, distinctly or-
dered in rank and file in the two dimensions of the plane.
In the spring of 1912, Laue was struck by the idea that a
similar phenomenon could manifest itself when a beam of
Rontgen’s rays was directed at a crystal from a well crys-
tallizing substance. Convinced as he was of the wave-like
nature of those rays — in 1912, as said above, still fully
hypothetical — and, besides, that crystals are three-dimen-
sional lattices of molecules, Laue had every reason to ex-
pect something interesting at a photographic plate placed
behind the crystal, exactly like the screen behind the grat-
ing in optics.

There was also every reason to speak of a great con-
junction, there in Munich, in the Faculty of Science. Wil-
helm Conrad Rontgen (1845-1923) himself, the disco-
verer of the radiation and, in 1901, the first Nobel laureate
for physics, was still fully active as Professor of Expe-
rimental Physics. There was also Arnold Sommerfeld
(1868—-1951) as Professor of Theoretical Physics since
1906 and Editor-in-Chief of the forementioned Encyclo-
paedie [...]. To conclude, the name of Paul Heinrich von
Groth may be mentioned, the mineralogist of worldwide
renown, who, as a former colleague of Sohncke, was an

7 The mole concept had been introduced by Wilhelm Ostwald
(1893) and propagated through the chemistry textbooks of Arnold F.
Holleman in their countless editions (1898—). The number of mole-
cules involved had been established by Jean Perrin (1908), who
called it after Amedeo Avogadro. For the context, see Kubbinga
(2009), volume ii, pp. 520-527.
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Fig. 17. Setup of Laue, Friedrich and Knip-
ping. The source of Rontgen’s radiation is se-
parated from the crystal under investigation
by a lead screen, S, pierced at By, and a se-
ries of ever-finer lead diaphragms B, (in the
lead chamber K), B3 and B4. Around the crys-
tal Kr photographic plates may be placed at
various positions P;_s. The extension R is
added to trap the straightforwardly passing
rays and obviate disturbing secondary rays of
the wall. For precision measurements there is
a diaphragm Ab for the pinhole B in screen
S (Friedrich et al., 1912).

addict of the lattice theory. The memory of Sohncke was
otherwise still alive: his models for the various point lat-
tices were used daily in classes by Groth.

In the intervening time it had become clear that Ront-
gen’s radiation, also known as X-rays, on hitting the sur-
face of particular crystals released an instantaneous sec-
ondary radiation. In case of normal light, it could have
been an example of ‘fluorescence’. Therefore, Laue was
ready to expect that such eventual secondary radiation,
too, could give rise to interference.

His colleagues Walther Friedrich (1883—-1968) and Paul
Knipping (1883-1935), both former students of Rontgen,
were easily persuaded and went on to test Laue’s idea
with the aid of a thin plate of crystalline copper sulfate
(CuSOyq - 5H,0) (for fascinating details, see Eckert 2012).
This salt crystallizes easily and contains a metal of suffi-
ciently high atomic weight [Z(Cu) = 29] to expect an in-
tense secondary radiation at a rather limited wavelength
interval. Expecting indeed interference of the secondary
radiation, they placed photographic plates before and be-
side the crystal (P;_3 in Fig. 17). Later they also placed a
plate behind the crystal (first at P3, then at P,) and noticed
after 20 hours of uninterrupted radiation the emergence of
perfectly distinct spots precisely on this photographic
plate. With a subtle feeling for what was happening they
replaced the triclinic crystal of copper sulfate by a nicely
cubic crystal of zinc sulfide. First a ZnS platelet perpendi-
cular to the z axis — that is, parallel to Miller’s (001)
plane — and measuring 10x 10x0.5 mm was used. The
‘photogram’ indeed showed a comparable increase in the
regularity of the distribution of the spots (Fig. 18). What
was more, Laue found in the ‘photogram’ the same sym-
metry elements in the distribution of the spots as could be
expected from a deduction in the spirit of Gadolin for the
(001) face of a homohedral crystal of the regular system,
viz one fourfold rotation axis and four twofold axes (or
four planes of symmetry). In the eyes of Laue, Friedrich
and Knipping, the correspondence in symmetry elements
could be considered as an equally simple and direct proof
of the correctness of the lattice theory. They also noticed

that there was no difference between the straightforward
passing beam and the secondary beams that were responsi-
ble for the spots: if a platelet of aluminum of 3 mm thick-
ness was placed in the beams then equal fractions of the
radiation were absorbed. That is to say that the secondary
beams do not differ at all from the entering beam and that
there is no question of a phenomenon resembling fluores-
cence. Indeed, if it had been a matter of fluorescence then
the wavelength of the secondary rays ought to be appreci-
ably greater, while the major part of it should have been
trapped by the aluminum.

The amazing discovery of Laue, Friedrich and Knip-
ping happened at a time when so many theoretical and
practical breakthroughs were being reported in the domain
of the structure of matter. Kamerlingh Onnes, for instance,
had just revealed the superconductivity of metals at low
temperatures. Further, there was the new atomic model of
Nobel Prize laureate Rutherford, in which a very small
‘nucleus’ featured prominently, a model that gradually won
adherents in physics. The young Dane Niels Bohr busied
himself with the elaboration of a model in which the spec-
tral lines were brought in relation with the trajectories of
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Fig. 18. The ‘photogram’ found for a (001) platelet of zinc sulfide
(sphalerite). The symmetry elements are self-evident: the main axis is
fourfold, while there are four twofold rotation axes (four planes of
symmetry) (Friedrich et al., 1912).
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the electrons around Rutherford’s ‘nucleus’. This thrilling
context notwithstanding, the news of the crystal-caused
interference phenomena came like a flash of lightning out
of the blue. The lattice theory of crystals was promoted
overnight from a handy aid in classification to the unshak-
able cornerstone of all theory of matter. On the other
hand, the atomic and molecular theory, with its already
generally acknowledged aureole of undeniable experimen-
tal fact, was corroborated once more.

8. Concluding remarks

At the centenary of the epochal achievements of Laue,
Friedrich and Knipping, it is interesting to see how their
experiments stressed the essentially afomic structure of
crystals. As such, this was the culmination point of a de-
velopment within the framework of crystallography itself.
Indeed, the new branch of natural science had seen the
rise of a molecular lattice theory (Hatly, Delafosse, Bra-
vais), which gradually transformed into an atomic lattice
theory (Sohncke).
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