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Abstract. Even though the higher-dimensional super-
space approach is an established method to describe aper-
iodic crystal structures, it is not yet fully considered and
applied by a larger community of scientists. In this contri-
bution the structural description of incommensurately and
commensurately modulated molecular compounds is dis-
cussed and it is shown, that the higher-dimensional super-
space approach is an elegant way for an exact structural
description and an exact crystal-chemical analysis of such
structures. While discussing several modulated molecular
compounds, the idea behind the higher-dimensional super-
space approach is shown. On the examples treated in the
discussion it is explained, how to understand and how to
interprete modulated molecular compounds. Also a short
introduction is given to the higher-dimensional superspace
approach itself, to the basic principles and to the applied
nomenclature.

1. Introduction

The description of modulated structures applying the higher-
dimensional superspace approach is now a well established
method. Nevertheless, it is not yet fully accepted and ap-
plied by a larger community of scientists and it is some-
times believed to be something for “specialists”. This might
be due to the fact, that the superspace approach seems – at
a first glance – somehow complicate and/or difficult to ap-
ply or – in the worst case – simply not necessary to be
done for a proper crystal structure analysis. Another reason
might be the lack of knowledge, with which software such
structural work and analysis should be done.

It is not the idea of this contribution to give a complete
discussion on the description of aperiodic crystal struc-
tures applying the higher-dimensional superspace approach.
Nevertheless, for a better understanding of the following, a
concise overview of the superspace approach is given in
Sections 2.1 and 2.2 in more detail, to introduce the basic
concept and the applied nomenclature. In Section 2.3
“More literature” some thorough accounts for a deeper

study, including feature articles, reviews and textbooks dedi-
cated to this topic, are proposed for the interested reader.

In Section 3 it is shown, that for incommensurately
modulated crystal structures it is not only necessary but also
appropriate and even profitable to describe aperiodic or bet-
ter incommensurately modulated crystal structures within
the higher-dimensional superspace approach. And (hope-
fully) it might be also shown, that to do so is not as compli-
cate as it is feared. The effects of the modulation to a molecu-
lar crystal structure and also to the structure of the molecule
are presented on some selected examples. It is also shown,
how such structures can be understood and interpreted
during refinement and in the crystal-chemical analysis.

2. The superspace approach

2.1 Periodic and aperiodic crystals

Crystalline matter is understood to be built up by a regular
arrangement of its atomic constituents (like atoms, ions,
molecules, . . .) in space. This regular arrangement leads to
a three-dimensional long-range order, which is reflected in
sharp and discrete Bragg reflections in the diffraction pat-
tern. The most common and most well know manifesta-
tion of long-range order is translational symmetry, i.e. per-
iodicity. However, there are quite a few materials, in
which three-dimensional periodicity is not present in the
crystal structure [1]. Despite the lack of three-dimensional
periodicity, these materials possess a (in principle) perfect
three-dimensional long-range order in the spatial arrange-
ment of their atomic constituents. They are called aperio-
dic crystals and are distinguished from the three-dimen-
sional periodic ones – the normal crystals in the classical
sense – by just this feature: their structures lack three-
dimensional translational symmetry but nevertheless pos-
ses three-dimensional long-range order.

This is one of the main discoveries of the recent re-
search of modern crystallography, that three-dimensional
periodicity is not an essential condition for the existence
of crystals [2]. Periodicity is not the only possible means
to achieve long-range order. As a direct consequence, the
classical textbook definition of a crystal demanding a
“regular repetition of the atomic constituents in the three-
dimensional space” is not valid any more. A more recent
definition of a crystal by the IUCr ad interim Comission
on Aperiodic Crystals is much less restrictive: here a crys-
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tal is defined as “any solid having an essentially discrete
diffraction diagram” [1]. With this new definition crystals
are not defined in direct space any more, but via their
diffraction pattern in reciprocal space. This new definition
is rather broad and general, but it has the advantage that it
covers not only aperiodic crystals but also disordered ones
and solid solutions which do not obey periodicity in a
strict sense, too.

In general, three different kinds of aperiodic crystals
are considered [3]. Modulated structures can be interpreted
as a basic structure with three-dimensional space group
symmetry, which is modulated by a periodic deformation
(¼ modulation). The periodicity of the modulation (in the
incommensurate case) does not belong to the periodicity
of the basic structure. Composite or intergrowth crystal
structures consist of two (or more) subsystems, whose ba-
sic structures are mutually incommensurate [4]. Each of
the substructures has its own space-group symmetry. The
space groups of the substructures can be uniquely derived
from the overall superspace group. The single lattices are
not sublattices of a common (three-dimensional) one and
it is not possible to express one lattice by the other one
with rational numbers. These compounds do not possess
one common basic lattice. Nevertheless, the intergrowth is
coherent, the intergrowth compounds have to be regarded
as single thermodynamic phases. Quasicrystals are “con-
sidered to be characterized by the absence of an average
Bravais lattice and/or the observation of ‘forbidden’ crys-
tallographic symmetry (e.g. decagonal)” [5]. This means,
that quasicrystals do not have a three-dimensional periodic
basic structure, also the basic structure itself is incommen-
surate. Usually (but not necessarily) quasicrystals exhibit a
non-crystallographic point symmetry in their diffraction
pattern, i.e. a symmetry which is not compatible with the
translational lattice symmetry, e.g. a 5-, 10- or 12-fold ro-
tation axis. The present contribution is focussing on modu-
lated structures of organic (molecular) compounds. Compo-
site structures and quasicrystals will not be further discussed.

As crystal structures reflect the forces, which appear
between the atomic constituents of solid matter, and as the
understanding of the structures and the bonding between
the atomic constituents is a fundamental condition for
being able to explain, modify, or even predict their physi-
cal and chemical properties, the description of crystal
structures has to be as precise and accurate as possible.
Depending on the problem, it might not be appropriate to
neglect the modulation or to mimic the modulation by a
superstructure approximation (for an explanation, see later
in the text in Section 3.3), but to exactly describe it within
the (3þ d)-dimensional superspace approach. The ques-
tion arrising is, which of the models describes the struc-
ture more efficient and which one yields a deeper physical
and chemical insight of the material and its properties.

2.2 The higher-dimensional superspace

Aperiodic crystal structures can be understood and de-
scribed within the higher-dimensional, i:e: (3þ d)-dimen-
sional superspace approach, which is now a well estab-
lished method. The superspace can be understood as an

extension of the three-dimensional space to (3þ d) dimen-
sions. In this notation “(3þ d)” the “3” at the first posi-
tion represents the dimensions of the first subspace, i.e.
the three-dimensional physical space, in which the atoms
are positioned, or the three-dimensional reciprocal space
of the diffraction patter, respectively. The “d” at the sec-
ond position represents the additional dimensions of the
second subspace, which is orthogonal to the first one. The
first subspace is also called external or parallel space, VE

or Vk, the second subspace also internal or perpendicular
space, VI or V?. In other words, the superspace V is sepa-
rated into two orthogonal subspaces

V ¼ VE � VI : ð1Þ
Please note, that in this context a (3þ 1)-dimensional
superspace and a (2þ 2)-dimensional superspace are both
four-dimensional spaces, but result in different interpreta-
tions.

Advantage of this approach is, that a three-dimensional
aperiodic structure can be described and interpreted in
superspace as a higher-dimensional periodic one. This
means, that the concept of periodicity (translational sym-
metry), which is a well established and powerful tool in
crystallography, can be retained.

2.2.1 Reciprocal space

A clear hint that a structure is an incommensurately modu-
lated one, is given in the diffraction pattern. Two sets of
peaks can be discriminated. One set is formed by the so-
called main reflections, the other is formed by the so-
called satellite reflections. The main reflections are in gen-
eral stronger and span a three-dimensional lattice defined
by the reciprocal lattice vectors a*, b*, c*. The satellite
reflections are weaker and do not represent lattice points
with respect to a*, b*, c* or any other three-dimensional
lattice, i.e. they can not be indexed with three small inte-
ger numbers. Two examples for such diffraction patterns
of modulated structures are shown in Fig. 1. For incom-
mensurate composite crystals and for quasicrystals the dif-
fraction pattern is more complex.

To index in such cases all Bragg peaks (main reflec-
tions and satellite reflections) by small integer numbers,
the three reciprocal lattice vectors a*, b*, c* are not suffi-
cient any more, one or two or three additional vectors
have to be introduced. In case of one additional vector q,
i.e. if four integers hklm are required to index all peaks in
a unique way according to Eq. (2) (Fig. 1a), the structure
is one-dimensionally modulated, one extra dimension is
needed for the description in superspace.

Sð3þ1Þ ¼ ha*þ kb*þ lc*þ mq ;

Sð3þ2Þ ¼ ha*þ kb*þ lc*þ mq1 þ nq2 ; ð2Þ

Sð3þ3Þ ¼ ha*þ kb*þ lc*þ mq1 þ nq2 þ pq3 :

With two additional vectors q1 and q2, i.e. five integers
hklmn for indexation (Fig. 1b), the structure is two-dimen-
sionally modulated, and with three additional vectors it is
called three-dimensionally modulated.

In Fig. 1a a precession photograph of the h1l layer of
reciprocal space of quininium (R)-mandelate, C20H25N2O2

þ

500 A. Schönleber



� C8H7O3
�, at room temperature is shown (the photo was

taken in-house with a sealed X-ray tube). This compound
has monoclinic symmetry, the additional vector is
q ¼ ðs1; 0; s3Þ. Figure 1b exhibits the reconstruction of the
hk7 layer of reciprocal space of L-Cobalt(III) sepulchrate
trinitrate, C12H30N8Co3þ � 3 NO3

�, at T ¼ 115 K (the data
was collected with a CCD detector at the synchrotron). As
the compound is hexagonal, the two additional vectors
q1 ¼ ðs; s; 0Þ and q2 ¼ ð�s; 2s; 0Þ are related by symme-
try.

From now on in this contribution all discussion shall
be limited to the case of one-dimensionally modulated
structures described in (3þ 1)-dimensional superspace.

The four vectors a*, b*, c* and q define the (3þ 1)-
dimensional superspace. They are rationally independent,
but not linearly independent vectors: the main reflections
and the satellite reflections create a three-dimensional qua-
si-lattice of rank 4 . With respect to the three reciprocal
lattice vectors spanned by the main reflections (Fig. 1a)
the fourth vector q can be expressed by

q ¼ s1a*þ s2b*þ s3c* : ð3Þ
The vector q is called the “modulation wave vector”, it
represents direction and wavelength of the modulation
wave through the crystal structure. If at least one of the
components si (i ¼ 1; 2; 3) has an irrational value (or is a
function of temperature, pressure, . . .), the structure is
called “incommensurately modulated”.

To interprete the diffraction pattern with main reflec-
tions and additional satellite reflections, one can follow an
idea of de Wolff [6] and understand it as a projection of
higher-dimensional space into three-dimensional space. In
Fig. 2 the three-dimensional diffraction pattern, repre-
sented by R*3, consists of main reflections and of satellite
reflections. The vector e4 is a unit vector of the four-di-
mensional Euclidean space orthogonal to R*3. The recipro-
cal lattice vectors a*, b* and c* span the three-dimen-
sional reciprocal lattice of main reflections, the vector q is
the projection of the additional dimension into this three-
dimensional reciprocal space. In the example of Fig. 2 it is
the projection of a*s4 into R*3.

2.2.2 Direct space

How to interpret now the superspace approach for the de-
scription of an aperiodic crystal structure with respect to
the atoms? How to describe an aperiodic crystal structure,
i.e. the non-periodic arrangement of atoms in three-dimen-
sional direct (physical) space, within the higher-dimen-
sional superspace approach?

For classical three-dimensional periodic crystal struc-
tures the diffraction pattern in reciprocal space is under-
stood as Fourier transform of the crystal structure in direct
space. This holds also for aperiodic crystals structures. It
is a general property of the Fourier transform, that the
projection of a higher-dimensional lattice into three dimen-
sions in reciprocal space corresponds to a three-dimen-
sional section (or cut) of a higher-dimensional structure in
direct space. Therefore, the three-dimensional (aperiodic)
crystal structure will be interpreted as a three-dimensional
section (or cut) of a higher-dimensional (periodic) struc-
ture. As a consequence, the atoms in higher-dimensional
superspace are not discrete objects any more but have to
be described by one-dimensional objects (for the case of a
description in (3þ 1)-dimensional superspace) along the
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Fig. 1. (a) Precession photograph of the h1l layer of reciprocal space
of quininium (R)-mandelate at room temperature. All peaks can be in-
dexed uniquely by four small integers hklm applying the (3þ 1)-di-
mensional superspace approach with additional vector q ¼ ðs1; 0; s3Þ.
(b) Reconstruction of the hk7 layer of reciprocal space of L-Cobalt(III)
sepulchrate trinitrate at T ¼ 115 K. To index all peaks uniquely, five
small integers hklmn have to be applied within the (3þ 2)-dimensional
superspace approach and two additional vectors q1 ¼ ðs; s; 0Þ and
q2 ¼ ð�s; 2s; 0Þ (further explanation is given in the text).

Fig. 2. Schematic drawing of the superspace approach in reciprocal
space: the diffraction pattern of a modulated structure is represented
by the horizontal line R*3 along a* with main reflections (orange) and
satellite reflections (blue) up to second order, i.e. m ¼ �2 in Eq. (2).
In this example, the modulation wave vector runs parallel a* and can
be written as q ¼ ðs1; 0; 0Þ. The diffraction pattern along R*3 is inter-
preted as a projection from higher-dimensional space, here (3þ 1)-
dimensional, into three-dimensional space. The projected peaks are
the satellite reflections (further explanation is given in the text).



additional internal space VI (Fig. 3). For (3þ 2)-dimen-
sional superspace the atoms will be interpreted as two-di-
mensional objects and for (3þ 3)-dimensional superspace
as three-dimensional objects, respectively.

Looking in Fig. 3 along the three-dimensional space R3

(the representation of the crystal structure in physical
space VE), the distance between the orange (light grey)
atomic positions 1–2 of first and second unit cell is
clearly larger than the one between 2–3 of second and
third unit cell. Also the blue (dark grey) atomic position 5
in the second unit cell is not occupied, while positions 4
and 6 in the first and third unit cell are occupied: there is
clearly no periodicity present in R3, neither with respect to
atomic positions, nor with respect to the content of the
unit cells. But looking now at the complete picture, the
continuous orange line and the discontinuous blue line are
both periodically distributed in the superspace lattice
(as1; as4). So, the aperiodic structure along R3 becomes
periodic in the higher-dimensional space, the aperiodic
crystal structure in physical space is interpreted as a three-
dimensional section (or cut) of those higher-dimensional
periodic object. This means, within the superspace formal-
ism a real, three-dimensional aperiodic structure is inter-
preted as a section (or cut) of a higher-dimensional periodic
structure. The other way around, the three-dimensional sec-
tion of a higher-dimensional periodic structure results in an
aperiodic arrangement of the atoms. However, it has to be
stressed again, even though the three-dimensional periodi-
city is lost, the atoms are not at all randomly distributed, the
three-dimensional crystal structure is still perfectly long-
range ordered along all three dimensions of physical space.
The periodicity can be recovered in higher-dimensional
space.

There are several possibilities for a modulation of a
crystal structure: The three most common types in chemi-

cal crystallography are the displacive modulation, the oc-
cupational modulation and/or the modulation of the aniso-
tropic atomic displacement parameters (anisotropic ADPs).
Displacive modulation means, that the position of the
atoms, i.e. the fractional coordinates ðxyzÞ, varies along
the internal space (such a modulation is represented by the
continuous orange line in Fig. 3). With an occupational
modulation the site occupancy of the atom (the discontinu-
ous blue line in Fig. 3) is changing along VI and with the
modulation of the anisotropic ADPs the ADPs are chan-
ging, respectively. The “and/or” shall stress, that also com-
binations of the different types of modulation can appear.
But in principle, every variable physical property can be
modulated. There can be for example also some long-
range charge ordering or within a magnetic structure a
spin ordering, resulting in a charge density wave or in a
spin density wave, respectively (which then might also af-
fect the atomic positions and the ADPs).

Depending on the structure under investigation and de-
pending on the modulation itself, these changes of the
concerned atomic property (position, occupation, . . .) can
be approximated or described by different functions,
which are all periodic along the internal space VI. Such
functions are called atomic modulation functions (AMFs).
The continuous orange line in Fig. 3 for example might be
described by a harmonic function

fiðx4Þ ¼ xi þ Ai
1 cos ð2p 1x4Þ þ Bi

1 sin ð2p 1x4Þ
þ Ai

2 cos ð2p 2x4Þ þ Bi
2 sin ð2p 2x4Þ

þ ::: ; ð4Þ

in which all Ai
1;B

i
1, Ai

2;B
i
2, . . . have to be defined and

then of course also refined to describe the modulation of
the atom in a proper way. As the harmonic function is a
continuous function, it is suitable to describe modulations
with a smooth change of the atomic variable under consid-
eration. In (3þ 1)-dimensional superspace it is possible to
apply next to the harmonic functions also step like (block
wave) or sawtooth functions [7, 8] as AMFs. The advan-
tage of step like functions is, that they need in general less
parameters to be refined than harmonic functions: a block
wave function is defined by the two parameters width,
Dx4, and centre, xo

4. The discontinuous blue line in Fig. 3
for example is better described by a step like function.
Please note, that both functions (in Fig. 3 the orange and
the blue lines) repeat periodically along as4, the dimension
in internal space VI.

2.2.3 Symmetry in superspace

To be able to use symmetry considerations by applying
the higher-dimensional superspace approach, the so-called
higher-dimensional superspace groups (SSGs) have been
set up. Those higher-dimensional superspace groups can
be applied to the symmetry of modulated structures and of
composite crystals. As quasicrystals show non-crystallo-
graphic pointgroup symmetry, they have to be treated with
a different approach, which is, however, out of scope of
this contribution.

To set up such a higher-dimensional superspace group
from the experimental data of the structure under investi-
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Fig. 3. Schematic drawing on the extension of an aperiodic crystal
structure along R3 into superspace. Two atoms are drawn per unit
cell, the orange one through positions 1, 2 and 3 shows a displacive
modulation, the blue one through positions 4 and 6 an occupational
one (further explanation is given in the text).



gation – as in the case of the classical three-dimensional
space groups – one first has to determine the point group
symmetry from the symmetry of the diffraction pattern. In
the next step then, the specific superspace group can be
chosen on the basis of selection rules characterized by sys-
tematic absences in the diffracted intensities of main re-
flections AND of satellite reflections.

Again the discussion here shall be limited to the
(3þ 1)-dimensional case. The (3þ 1)-dimensional super-
space groups are four-dimensional space groups. As it is
the case for the three-dimensional space groups, also the
superspace groups represent groups of transformations,
which are distance preserving. These transformations of
the SSGs however are pairs of orthogonal transformations,
one in external space VE, one in internal space VI. So a
(3þ 1)-dimensional superspace group is a four-dimen-
sional space group with the additional property, that it dis-
criminates between the three-dimensional physical sub-
space VE and the d-dimensional additional subspace VI.
Both subspaces VE and VI are left invariant, superspace
symmetry operators are called to be ð3; 1Þ reducible.

For the particular case of one-dimensionally modulated
structures the set of (3þ 1)-dimensional superspace
groups has been tabulated in the International Tables for
Crystallography, Volume C [3]. Very recently complete
lists of all (3þ 1)-, (3þ 2)- and (3þ 3)-dimensional
superspace groups have been established and are accessi-
ble via an online data repository [9].

As an example the (3þ 1)-dimensional superspace
group P2=m ð0s20Þ s0 shall be briefly discussed (for
further details the reader is refered to the literature listed in
Section 2.3). The monoclinic lattice (b-unique) is primitive,
the modulation wave vector q ¼ ð0; s2; 0Þ is running paral-
lel to the reciprocal lattice vector b*, which means, parallel
to the twofold axis and perpendicular to the mirror plane.
The twofold axis is associated with an intrinsic phase shift
1=2, as indicated by the small letter s in the symbol (one
can understand this as a “screw axis” with translational
component along internal space). No intrinsic phase shift is
associated with the mirror plane (as indicated by the 0 in
the symbol). However, as the modulation wave vector q is
perpendicular to the mirror plane, it is inverted by that
mirror plane, the mirror plane is associated with a phase
inversion �11 of the modulation wave along the fourth dimen-
sion. Therefore, as proposed by van Smaalen [10] one
might write as an extended superspace group symbol:
P2=m ð0s20Þ s�11. The resulting symmetry operators for the
four symmetry elements idendity, inversion, twofold rota-
tion axis and mirror plane can be expressed as:

1 : x1 x2 x3 x4

2 : �x1 x2 �x3 x4 þ 1
2

1 : �x1 �x2 �x3 �x4

m : x1 �x2 x3 �x4 þ 1
2

ð5Þ

Please note, that the translational component þ1=2 along
the fourth dimension for the mirror plane is not an intrin-
sic shift, but an origin dependent one.

One can see on that example, that the (3þ 1)-dimen-
sional superspace symmetry operator gs consists on rota-
tional and translational parts ½Rs j vs�, which can be ex-

pressed in the ð3; 1Þ reducible form as ½ðR;RIÞ j ðv; vIÞ�
¼ ½ðR j vÞ; ðRI j vIÞ�. For the (3þ 1)-dimensional case RI is
also denoted as E and vI as D. The part ðR j vÞ of the sym-
metry operation for the external space VE belongs to the
three dimensional space group of the basic structure,
which is then associated with additional symmetry ðE jDÞ
in internal space VI. In other words, the transformations of
the space group of the basic structure give rise to a sym-
metry transformation for the modulated structure when
combined with an appropriate phase shift D and a possible
phase inversion E. To keep the ð3; 1Þ reducibility, the point
group operation R must leave the orientation of the modu-
lation wave vector q invariant. This is ensured by the rela-
tion

Rq ¼ Eq ; ð6Þ
modulo reciprocal lattice vector of the basic structure [3].
Then in the diffraction pattern the rotational operator R
transforms main reflections only into main reflections and
satellite reflections only into satellite reflections of same
order m. As consequence of Eq. (6) the choice of the mod-
ulation wave vector q is related to the symmetry [10], the
modulation wave vector components have to fulfil the rela-
tion (in case, that all rational components are zero).

ðs1; s2; s3Þ R�1 � E�1ðs1; s2; s3Þ ¼ ð0; 0; 0Þ : ð7Þ

The superspace group symbol therefore gives in addi-
tion to the three-dimensional point group symmetry of the
average structure also information on the possible centring
of the higher-dimensional lattice, on the components of
the modulation wave vector q and on the associated intrin-
sic shifts for each symmetry element (screw- or glide-com-
ponents) along the additional dimension. The point group
symmetry of the diffraction pattern is preserved by the
higher-dimensional superspace group in both subspaces,
the external space VE and the internal space VI.

In this context it is necessary to discuss the difference
between the terms basic structure (which has been used
already in Section 2.1) and average structure (which is
used here). The basic structure is the undistorted crystal
structure (sometimes also called reference structure). It is
obtained by taking the modulated structure, removing all
modulation parameters and keeping only the fractional co-
ordinates ðxyzÞ and the anisotropic ADPs Uij. The average
structure is the structure, which is averaged over all modu-
lations and which is obtained by a refinement in three-di-
mensional space: only the main reflections are taken into
account [11], the contribution of the satellite reflections is
neglected. Both structures have three-dimensional space
group symmetry. But please note also, that both structures,
basic structure and average structure, are not real existing,
they both have only hypothetical character. In case of
strong modulation they also might not be chemically
meaningful (for example with respect to interatomic dis-
tances and angles).

If two atoms in a classical three-dimensional periodic
structure are related by a symmetry operation g, the frac-
tional coordinates of these two atoms for example are re-
lated via

r0 ¼ gr ¼ ðR jvÞ r ¼ Rrþ v : ð8Þ
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In case of a modulated structure with displacive modula-
tion in addition also the AMFs of the atoms are related by
the symmetry operation. As it can also be seen in Eq. (4)
for example, the AMFs are functions of the basic structure
coordinates

xsi ¼ xiþuiðxs4Þ : ð9Þ

The function uiðxs4Þ is the corresponding AMF. Then the
transformation of this function of coordinates can be writ-
ten as [10]

u0ðxs4Þ ¼ Ruð½Rs jvs��1 xs4Þ ; ð10Þ
an in case, that all rational components of the modulation
wave vector are zero, as [10]

u0ðxs4Þ ¼ Ru½E�1ðxs4�vs4Þ� : ð11Þ
For an occupational modulation one can derive the expres-
sion [10]

p0ðxs4Þ ¼ p½E�1ðxs4�vs4Þ� : ð12Þ
For illustration, in Fig. 4a–c the AMFs for displacive

modulation of an imaginary atom Q in a hypothetical
structure is shown together with one of its symmetry
equivalent atom Qi. A monoclinic lattice was assumed
with lattice parameters 6 Å, 5 Å, 7 Å, 90�, 92�, 90�. The
above discussed superspace group P2=m ð0s20Þ s1 is ap-
plied with the modulation wave vector component
s2 ¼ 0:37. The displacive modulation of atom Q is de-

scribed with two harmonic waves (Eq. 4), the correspond-
ing parameters are x ¼ 0:18, Ax

1 ¼ 0:011, Bx
1 ¼ �0:007,

Ax
2 ¼ �0:007, Bx

2 ¼ 0:003, and y ¼ 0:12, Ay
1 ¼ �0:019,

By
1 ¼ �0:004, Ay

2 ¼ 0:004, By
2 ¼ �0:003, and z ¼ 0:14,

Az
1 ¼ 0:009, Bz

1 ¼ �0:014, Az
2 ¼ 0:006, Bz

2 ¼ 0:005.

2.2.4 Crystal-chemical analysis

For the crystal-chemical analysis of the aperiodic crystal
structure, one has to consider, that in the superspace ap-
proach the crystal is understood as a three-dimensional
section (or cut) of the higher-dimensional structure. And
the spacial arrangement of the atoms in this section is
aperiodic (but still long-ranged ordered). As consequence,
one has not just one specific value for e.g. an interatomic
distance between two atoms, but a range of values with a
minimum, a maximum and an average value. This section
(or cut) to be considered is a function of the phase of the
modulation t, and not of the fractional coordinate x4 in the
superspace lattice. It is seen in Fig. 3, that e.g. the atomic
positions 2 and 3, which are in the same cut of the higher-
dimensional structure, have the same value for the para-
meter t, which holds also for the positions 20 and 30, re-
spectively, but they have different values for x4. In fact, as
they are correlated by simple lattice translation, the posi-
tions 2 and 20 and also 3 and 30 (and 300) have the same
values for x4, but are all in different sections (different
values for t). The relation between t and x4 is given by

t ¼ x4 � qr ; ð13Þ
i.e. the relation between both depends on the position r of
the atom and on the modulation wave vector q. As conse-
quence, for the crystal-chemical analysis only atoms with
the same phase of the modulation, i.e. with the same value
of t, have to be considered, as it is the case for the cut
along R3. But now one can profit from the periodicity
recovered in higher-dimensional superspace: it is possible
to shift all atoms, i.e. the intersections of the atomic mod-
ulation funtions with R3 from this three-dimensional space
line R3 into the first unit cell (applying the translational
symmetry of the superspace as1, as2, as3 and as4).

It is seen again in Fig. 3, that the distance between the
positions 2–3 corresponds to the distance between the po-
sitions 20–30. In other words, varying t for a certain geo-
metric parameter, like an interatomic distance, from t ¼ 0
to t ¼ 1 does provide ALL values for this parameter oc-
curring anywhere in the three-dimensional aperiodic crys-
tal structure along R3. The graphical presentation of such
analysis, i.e. the sketch of a parameter as function of t, is
called a t-plot. Of course, not only interatomic distances
but all other structural features such as angles, torsion an-
gles, and also fractional coordinates, ADPs, site occupan-
cies, valences, . . ., which change as function of the phase
of the modulation t, are analysed in such way. And it is
exactly this variation of those parameters with t that is the
core of the discussion and crystal-chemical analysis for
modulated crystal structures. The t-plot for the distance of
the two symmetry equivalent atoms Q and Qi of Fig. 4a–c
is shown in Fig. 4d. The distance dQ�Qi varies as function
of the phase of the modulation t between 3:067 Å and
3:189 Å, the average is about 3:113 Å. It can be also seen
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b� d�
Fig. 4. (a)–(c) Schematic drawing of the displacive AMFs for the
fractional coordinates ðx1x2x3Þ along the internal space of an imagin-
ary atom Q (orange line) with its symmetry equivalent atom Qi (blue
line) along x4. The width of the maps is 3 Å, the symmetry code
is i: �x1 � x2 � x3 � x4 (further information on lattice, symmetry and
atomic parameters is given in the text). (d) t-Plot for the correspond-
ing interatomic distance between the two symmetry equivalent atoms
Q and Qi, i.e. the variation of the distance between the two atoms as
function of the phase of the modulation t.



directly in Fig. 3, that the two distances 1–2 and 2–3 of
neighbouring unit cells are not values next to each other
with respect to t but are separated by the value of the
corresponding modulation wave vector component (in the
example of Fig. 3 it is s1). Therefore then also in the
t-plot those values are separated by that value of the corre-
sponding si. The other way arround, neighbouring points
in the t-plot are separated by several unit cells in R3.

2.2.5 Software

Most of the commercial and several non-commercial (de-
pending on the purpose) diffractometer software and data
reduction programs have implemented an option to index
and integrate the diffraction peaks with up to six indices.

For structure solution several different approaches are
possible via solving the (three-dimensional periodic) aver-
age structure or a superstructure approximation [12] with
classical structure solution software (Patterson or direct
methods) and then to add in the next step of structure
refinement the modulation to the structural model. How-
ever, these are rather time consuming methods, which
cause in case of large structures or strong modulation se-
vere problems. A more elegant way is to solve the modu-
lated structure directly and ab initio within the higher-di-
mensional superspace approach, i.e. to obtain information
about fractional coordinates and also about the AMFs of
the atoms directly during structure solution. This can be
done with the charge flipping method applying the pro-
gram Superflip [13].

For structure refinement of a modulated structure the
first available software was Remos [14] for single crystal
data and Premos (the powder version of Remos). Another
very frequently used program package is Jana2006 [15].
The present release of Jana2006 allows refinement of non-
modulated, modulated and composite structures against
single-crystal and powder data, applying harmonic and/or
block wave funtions for the AMFs, anharmonic ADPs or
the TLS formalism. Also the option to refine magnetic
structures applying higher-dimensional magnetic super-
space groups is implemented [16].

With the program BayMEM discrete electron density
maps applying the maximum entropy method (MEM) can
be calculated in arbitrary dimensions [17]. This is a power-
ful tool in cases, where the AMFs can not by properly de-
fined due to disorder or modulated anharmonic ADPs [18].
The MEM allows to gain model-independent information
about the AMFs directly from the diffraction data.

Some more extended lists on software with further de-
scriptions can be found in appendix A of [10] and in Sec-
tion 4.3.5 of [19].

2.3 More literature

The development of the concept, a historical overview and
further explanation concerning aperiodic crystal structures
and the higher-dimensional superspace approach might be
found in the following review articles (and references
therein): Janssen and Janner [2], Janssen [20], van Smaa-
len [21] and Yamamoto [22] discuss incommensurability,
aperiodic and quasiperiodic crystals, incommensurate crys-

tal structures and how to describe them in the higher-di-
mensional superspace. Bertaut [23] is treating commensu-
rate and incommensurate crystals, while Chapuis [24]
considers modulated structures in the context of phase
transitions. More recent reviews are those of Mironov et
al. [25] about powder diffraction on modulated structures,
of Maciá [26] about aperiodic order in science and tech-
nology (discussing e.g. also links between quasiperiodic
crystals and hierarchical structures of biopolymers), of Bo-
lotina [27] about the state of the art of X-ray diffraction
analysis of modulated crystals and of Christensen [28]
about how to think on and how to teach the concept of
the higher-dimensional superspace approach to students.

A discussion on the superspace approach and on
(3þ 1)-dimensional superspace groups is given in the In-
ternational Tables for Crystallography, Volume C in chap-
ter “Incommensurate and commensurate modulated struc-
tures” by Janssen et al. [3]. The diffraction of aperiodic
crystals is treated in the International Tables for Crystal-
lography, Volume B in chapter “Reciprocal-space images
of aperiodic crystals” by Steurer and Haibach [29].

A special issue of Zeitschrift für Kristallographie (Issue
11, Vol. 219, 2004), editet by van Smaalen [30], is dedi-
cated to Incommensurate Crystallography of Modulated
and Composite Crystals, treating all different aspects of
this field of research. This issue includes also an elemen-
tary introduction to superspace, some discussion of differ-
ent experimental techniques and methods and the available
software.

The interested reader is referred to three textbooks, in-
troducing the principles of aperiodic crystals and the
superspace approach from a “crystallographic point of
view”: Aperiodic Crystals – From Modulated Phases to
Quasicrystals by Janssen, Chapuis and de Boissieu [19]
considers quasiperiodic crystals from a unified point of
view, dealing with the characterization of the structure and
study of the physical properties of aperiodic crystals with-
in the higher-dimensional superspace approach. Incommen-
surate crystallography by van Smaalen [10] gives a pro-
found and comprehensive account of the superspace
theory to describe structure and symmetry of incommensu-
rately modulated crystal structures and incommensurate
composite crystals. Crystallography of Quasicrystals –
Concepts, Methods and Structures by Steurer and Deloudi
[31] deeply describes the field of quasicrystal structure
analysis, covering metallic and photonic quasicrystals.

Finally, a non-mathematical introduction to the super-
space description of modulated (molecular) structures as a
kind of beginner’s guide or primer is given in [12]. In this
publication – based on a real modulated crystal structure
from a pharmaceutical crystallography service laboratory –
a practical approach is presented and the reader is taken
step by step through the approach how to tackle such pro-
blem and how to understand and interprete such structure.

3. Organic and organometallic compounds

Looking through the literature, at a first glance one might
get the impression, that mainly inorganic compounds are
affected by modulation. In the review of Cummins [32]

Organic molecular compounds with modulated crystal structures 505



about 65% and in the review of Yamamoto [22] even
about 80% of the cited compounds are inorganic. A search
in B-IncStrDB – The Bilbao Inconmensurate Structures
Database on the Bilbao Crystallographic Server [33, 34]
confirms this first impression.

But this is a somehow biased conclusion! There does
exist also a rather large number of modulated organic and
organometallic compounds. Also here a detailed and precise
description of the modulated crystal structure is necessary to
perform a crystal-chemical analysis for the interpretation of
chemical stability and interactions of those compounds. For
a better understanding of the nature of those modulated mo-
lecular crystals, both the chemical behaviour as well as the
structural characteristics should be analysed and the corre-
sponding origin of the modulation should be established.
In case of a phase transition from a non-modulated to a
modulated phase the knowledge of the geometry of the
deviation from the underlying basic structure will help to
understand the mechanism of the transition. This all can be
achieved in a rather elegant way also for molecular organic
and organometallic compounds by applying the higher-di-
mensional superspace approach (Section 2.2).

This approach, however, is not yet fully considered and
applied by the corresponding community of researchers
dealing with such (organic and organometallic) structures,
even though also modulated molecular compounds are
known since at least 60 years.

Some of the first examples questioning perfect three-
dimensional periodicity in organic compounds might be
the molecular complexes of 4 : 40-dinitrodiphenyl with
4-chloro-, 4-bromo-, 4-iodo- and 4 : 40-diiododiphenyl, pub-
lished by James and Saunder in the years 1947 and 1948
[35, 36]. The structures are built by layers of dinitrodiphe-
nyl molecules in a face-centred array creating tubular cav-
ities, in which the halogenated diphenyl molecules are
placed. While the halogenated diphenyl molecules lie ap-
proximately along the crystallographic c-axis, the dinitro-
diphenyl molecules are oriented approximately normal to
it. The authors argue, that not a chemical bonding, but
some dipole interaction generated by a mutual polarisation
of the molecules might be responsible for the stability of
the complexes. They conclude, that the regular spacing of
the layers of the dinitrodiphenyl molecules is modified by
some “periodic error” (!) along the crystallographic c-axis.
This periodic deformation is introduced by the length of
the halogenated diphenyl molecules.

Another example appeared only a few years later.
While studying the crystal structures of urea-hydrocarbon
complexes, Smith reported in 1952 extra spots in the dif-
fraction pattern with fractional “l” indices [37], indicating
not a random but an ordered arrangement of the hydrocar-
bon molecules in the channels created by the urea mole-
cules. Those structures are now known as urea inclusion
compounds (host-guest structures) and have attracted until
today quite some interest [38–45]. The urea molecules act
as host and form a honeycomb structure which creates at
room temperature parallel tunnels. The diameter of the
tunnels is such, that alkane chains and derivations thereof
can be inserted as guest molecules. In the host structure
the urea molecules are connected to each other via hydro-
gen bonds forming a hexagonal structure with symmetry

P6122 (or pseudo-hexagonal, depending on the tempera-
ture). The guest molecules show a positional long range
order forced by the steric constraints of the tunnels [43],
but they are normally rotationally disordered along the
tunnel axes at high temperature. Most of the urea inclu-
sion compounds undergo a structural phase transition at
low temperature (at about T ¼ 150 K to 100 K), which
results in a slight distortion of the host substructure and a
decrease of symmetry to orthorhombic. Although the tran-
sition temperature varies with the different types of guest
molecules, the type of structural distortion of the host
structure seems quite similar to all compounds. As the
phase transition induces multiple twinning, it is difficult to
describe the low temperature structures [42], in which the
order varies with different compounds. There are com-
pounds showing a well ordered three-dimensional sub-
structure, others show disorder even at very low tempera-
tures [40]. The order mechanism between the tunnels is
not yet fully understood. Because the host and guest sub-
structures are incommensurate with respect to each other,
the whole structure is better described while applying the
superspace approach. It also has to be stressed, that the
urea host structure is stabilized by the presence of the
guest, urea itself without a present guest is crystallizing in
a tetragonal structure.

One last “historical” example which will be mentioned
here is the intermediate phase of thiourea, SC(NH2)2. It
was reported in 1963, that the phase at low temperature
between T ¼ 202 K and T ¼ 169 K exhibits satellite re-
flections in the diffraction pattern [46]. A first model of
the modulated structure was proposed in 1971 [47] and
then another one in 1980 applying the then already known
higher-dimensional approach [48]. In 1988 the modulated
structure of thiourea was re-interpreted [49] while describ-
ing the displacive modulation of the molecule in a “rigid-
molecule refinement” (see Section 3.2). Two superspace
groups were tested, the acentric P21mað0s20Þ �11�110 and the
centrosymmetric Pnmað0s20Þ s�110. However, for the latter
one a large number of reflections 0klm contradicts the re-
flection condition k þ l 6¼ 2n for the n-glide plane. In both
models the lattices are orthorhombic primitiv, the modula-
tion wave vector q runs along the crystallographic b*-axis,
its component s2 varies with temperature. The modulation
is described as a rotation and a translation of the mole-
cules with respect to the orientation and position of the
molecules in the commensurate low-temperature phase. In
1989 a model for this commensurate low-temperature
phase (below T ¼ 169 K) within the superspace group
Pnmað0s20Þ s�110 and s2 ¼ 1=9 was proposed applying dif-
fraction data of satellite reflections up to third order [50].
For a better description of the anharmonicity of the modu-
lation functions (again in terms of rigid molecules) harmo-
nics up to third order were applied. The shapes of the
AMFs denote a beginning soliton regime.

3.1 Modulated molecular crystal,
what does it mean?

In this section two illustrative examples shall be discussed
to give some more detailed ideas about modulated molecu-
lar crystal structures.
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3.1.1 Biphenyl

The rather simple molecule of biphenyl, C12H10, is non-
rigid and just consists of two phenyl rings bonded by a
central C––C single bond. Two competing factors are im-
portant for the molecular conformation, the p-electron ef-
fect favouring coplanarity of the two planes defined by the
phenyl rings and the steric hindrance of the ortho-hydro-
gen atoms favouring a torsion of the molecule along the
long molecular axis, which is parallel to the central C––C
single bond (Fig. 5a).

Due to the repulsion of the ortho-hydrogen atoms, the
conformation of the molecule in the gas phase is non-planar,
the torsion angle between the planes of the two phenyl rings
along the central single C––C bond is f ¼ 42ð2Þ� [51–53].

In the crystal structure at room temperature the mole-
cule is – in contrast to the gas phase and at least on aver-
age – planar (f ¼ 0�), presumably due to intermolecular
forces. It was concluded, that it is not possible to pack
together non-planar molecules with their lower symmetry
and to get as much approximately equal intermolecular
contacts as with planar molecules [52]. Indeed, planar mo-
lecules better pack in the “heringbone” arrangement,
which is quite often found for aromatic molecules [54],
while the non-planar molecules do not properly fit to-
gether.

At room temperature the space group is P21=a, b-uni-
que, with two molecules situated on inversion sites, the
molecular symmetry being mmm [52, 55]. The intermole-
cular forces and the intramolecular forces, which compete
in the non-rigid molecule, seem to be of the same order of
magnitude [56]. To overcome somehow the steric repul-
sion, the ortho-hydrogen atoms are displaced in–plane in-
creasing their distances: while in the regular model their dis-
tance H––H should be about dH––H ¼ 1:8 Å, it was found to
be dH––H ¼ 2.07 Å without loosing planarity (Fig. 5b). As
consequence, also the corresponding C––C––H angles are
bended up to j ¼ 126� [55]. This conformation of the mo-
lecules was confirmed for the structure at T ¼ 110 K [57].
In [52] even a H––H distance of dH––H ¼ 2.2 Å is reported.
Another investigation at room temperature has confirmed
the planarity of the molecules, but has shown, that the libra-
tion around the long molecular axis is with an amplitude of
’ 10� rather large [58].

In [59] the planar conformation of the molecule was
interpreted as the result of dynamic disorder with
hfitime ¼ 0� and an actual molecular equilibrium geometry
of f ¼ 27� (but please note, that also in this description

the crystal packing with its intermolecular forces has a
flattening effect on the individual molecules).

At low temperatures two modulated crystalline phases
with non-planar molecules (f 6¼ 0�) [56, 60, 61] in the
crystal structure are found. The inversion symmetry of the
molecular structure and the inversion symmetry of the crys-
tal structure are destroyed. The torsion angle of f 6¼ 0�

between the planes of the phenyl rings as essential structur-
al modification of the low-temperature phases in biphenyl
is common with other polyphenyl structures. In biphenyl
the phase transitions take place upon cooling at Tc1 ¼ 40 K
and at Tc2 ¼ 16 K (at Tc1 ¼ 38 K and Tc2 ¼ 21 K for the
deuterated compound) [56, 62, 63]. The torsion angle be-
tween the two phenyl rings in the molecules varies as func-
tion of the phase of the modulation t. In the intermediate
phase between the two phase transitions, the modulation
wave vector is reported as about q ¼ 0:05a*þ 0:46b*.
Please note however, that a modulation wave vector
ðs1; s2; 0Þ is not compatible with a b-unique setting. No
further information regarding symmetry is given in [56]. In
the low temperature phase the modulation wave vector is
about q ¼ 0:46b* [56]. As the modulation wave vector
components (and also the intensities of the satellite reflec-
tions) vary with temperature in both phases, both phases
have to be regarded as incommensurately modulated struc-
tures.

For the low temperature phase the (3þ 1)-dimensional
superspace group is Pað0s20Þ �11, as derived from systema-
tic absences in the diffraction pattern. Also the centrosym-
metric superspace symmetry P21=að0s20Þ 0�11 was tested
and rejected by statistical arguments [61]. In the resulting
refined modulated structure the phenyl rings have been
considered as rigid bodies, i.e. all atoms of the ring must
be in phase. The final structural model can be described
by the following three main features [61, 64]: a torsion
with an amplitude of 5:5� for each phenyl ring, i.e., the
maximum deformation angle being f ¼ 11�, a rotation
around the normal to the mean molecular plane, with an
amplitude of w ¼ 1� and a translation along the long mo-
lecular axis with an amplitude of d ¼ 0:035 Å (Fig. 6).
The rotation w was found to be 90� out of phase with the
torsion while the translation d is in phase with the torsion.

The different molecular and crystal structures of biphe-
nyl, C12H10, with a twisted molecule in the gas phase and
a flattened molecule in the crystal structure at room tem-
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a� b�
Fig. 5. The molecular structures of biphenyl in (a) the gas phase and
(b) the crystal structure at room temperature. Due to steric strain by
the ortho-hydrogen atoms (indicated by the blue arrows), the mole-
cule is twisted in the gas phase and bended in the crystal structure at
room temperature with respect to a regular planar reference structure.

Fig. 6. Schematic drawing summarizing the effect of the modulation
to the individual molecules, which are twisted, rotated and shifted. As
the actual values for f, w and d vary with the phase of the modula-
tion t, only the maximum values are indicated.



perature, nicely demonstrate the competition between crys-
tal packing (intermolecular force) and molecular confor-
mation (intramolecular force) in molecular crystals. In ad-
dition, the torsion in the molecules around the long
molecular axis is the essential feature of the modulation of
the crystal structure in the low temperature phases. The
temperature dependence of the torsion angle can be ex-
plained by mutual frustrations of the intra- and intermole-
cular contributions to the lattice energy.

3.1.2 2-Phenylbenzimidazole

Next to biphenyl and also next to 4,40-dichlorobiphenyl
sulphone, (ClC6H4)2SO2 [65], which shall be just men-
tioned here without detailed discussion, the compound
2-phenylbenzimidazole, C13H10N2, is another clear and
comprehensible example for an incommensurately modu-
lated molecular crystal structure [66]. The molecule con-
sists of two planar moieties, a phenyl ring and a benzimi-
dazole group, which are linked via a C––C single bond
(Fig. 7a). The applied superspace group is C2=cð0s20Þ s�11
with s2 ¼ 0:368. This means, that the lattice is monocli-
nic b-unique with additional (3þ 1)-dimensional centring
(1=2

1=2 0 0) and a modulation wave vector parallel to the
crystallographic b*-axis. The twofold rotation axis is asso-
ciated with an intrinsic shift of 1=2 along the fourth dimen-
sion, the c-glide plane with a phase inversion of the mod-
ulation wave. Again, the variation of the intramolecular
torsion angle between the two flat moieties of the mole-
cule can be understood as the main feature of the modula-
tion. This variation is caused by the crystal packing,
which forces the molecular conformation to be close to
planar while the ortho-hydrogen atoms favour a twisted
molecule.

The structure has two independent molecules A and B
in the asymmetric unit, which are connected by intermole-
cular N––H � � �N contacts. The t-plots (see Section 2.2) for
the torsion angles is given in Fig. 7b for both molecules. It
can be seen, that the variation of molecule A, i:e: the mod-
ulation of the torsion angle as function of the phase of the
modulation t, is slightly larger then that of molecule B.

3.2 Modulated molecules

In the crystal structure the molecules are coupled by inter-
molecular forces, they interact with their neighbours via
van der Waals and hydrogen bonds. Their molecular con-
formations are defined by intramolecular forces. As shown
in the previous section, this can cause some conflict. Gen-
erally, the mutual frustrations of conflicting intramolecular
and intermolecular forces are believed to be one possible
reason for the modulation of the crystal structures of mo-
lecular compounds [67, 68]. As seen in the above men-
tioned “historical” examples of the 4 : 40-dinitrodiphenyl
complexes [35, 36] and in the urea inclusion compounds
[37], also a conflict in the packing of the molecules due to
“non-compatible” sizes of the involved molecules can re-
sult in a modulation of the crystal structure. Depending on
the rigidity of the molecules then also the molecular con-
formation might be modulated. In case of a structural flex-
ibility of the molecules, the frustrations caused by the
packing might be compensated by modulating the molecu-
lar conformation.

Intramolecular forces are the covalent bonds between
the atoms, defining interatomic distances and angles and
therefore the geometry of molecular units in the molecule,
e.g. the regular shape of a flat phenyl ring with equal dis-
tances between the six carbon atoms and angles of about
120�. In this respect the intramolecular forces are creating
some kind of rigid bodies. Intermolecular forces are
mainly van der Waals and hydrogen bonds. They deter-
mine the packing of the molecules in the crystal structure,
i.e. the spacial arrangement and therefore also the confor-
mation of the single molecules. Assuming now a molecule
built up by several rigid molecular units, the intermolecu-
lar forces stabilize the arrangement of these units with re-
spect to each other. This was already seen in the example
of biphenyl (Section 2.1): the two planar phenyl rings were
treated as rigid-bodies, while the orientation between them
had some degree of freedom, represented by the torsion
angle f along the central C––C bond connecting these two
rigid-units.

In the late 1980’s a small series of papers was pub-
lished by Petricek, Gao, Coppens and others, treating the
formalism and theory behind the structure analysis of
modulated molecular crystals. In those papers the authors
introduced the “rigid-body refinement” for the transla-
tional and rotational modulation of molecules or some
parts of it. This series of papers shall be shortly discussed
here.

In some first publications [64, 69] the “rigid-body ap-
proach” known from the treatment of thermal motion [70]
was extended and applied to the displacive modulation of
molecular crystal structures assuming a molecule or a part
of it to be displaced as a rigid-unit. It is argued, that due
to stiffness of the intramolecular linkages between the
atoms – for example due to covalent bonds – translational
and rotational displacement does not affect only individual
atoms but the complete molecule or at least some of its
segments. As reference for the phase of the molecular dis-
placement the molecule’s centre of mass is proposed, al-
lowing the refinement of different displacements for dif-
ferent molecules. As all other parameters like fractional
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a� b�
Fig. 7. (a) The molecular structure of 2-phenylbenzimidazole, con-
sisting of a planar phenyl ring (top) and a planar benzimidazole
group (bottom). (b) t-Plot of the torsion angle between the two planar
moieties as indicated in (a) for molecule A (green) with an amplitude
of �5� and molecule B (blue) with an amplitude of �3� (redrawn
from [66]). The broken grey line indicates the value f ¼ 180� corre-
sponding to a flat molecule.



coordinates or anisotropic ADPs are freely refined, the
geometry of each molecule can be – despite the rigid-
body displacement – fully adjusted.

In a second publication this rigid-molecule model was
applied in a re-investigation of thiourea, SC(NH2)2 [49].
In thiourea three types of N––H � � �S contacts do exist,
which are classified as hydrogen bonds. Interesting is the
fact, that a variation of these contacts as function of the
phase of the modulation t is reported. The shortest of
these hydrogen bonds shows only a small variation and
was therefore identified as the main force for restraining
the translational and rotational displacements of the mole-
cule (for more details see the discussion on the “histori-
cal” examples above). Another publication in this series
presents then an investigation on the lattice energy of the
modulated phase of thiourea [71], confirming the first re-
sults and concluding, that the extensive hydrogen-bonding
network in the crystal has to be considered as driving
force for the modulation. The modulated phase being the
intermediate phase between the paraelectric and the ferro-
electric phase is now understood as a gradual transition
from the first to the latter.

The next publications in this series [72, 73] are dedi-
cated to theoretical considerations on scattering and super-
space groups, extending the formalism to the general
(3þ d)-dimensional case (d 	 1) and on symmetry restric-
tions applied to the amplitudes of the modulation functions
for the case, that the atoms or rigid-bodies are located at
special positions in the modulated crystal structure. As a
direct application for the case d 	 1 the modulated struc-
ture of tetrathiafulvalene-tetracyanoquinodimethane (TTF-
TCNQ) in five-dimensional space is discussed [74]. Also
here the molecules have been assumed to behave as rigid-
bodies. This assumption was then confirmed during the
structure refinement process.

The approach of dividing a larger non-rigid molecule
into several rigid-units and to refine a common modula-
tion for all atoms in such group has the advantage of redu-
cing the number of parameters to be refined and of course
also of keeping a certain geometry of the molecule. This
might help in the case of a limited number of reflections
(especially only a small number of observed satellite re-
flections) or when the data quality is not as high as pre-
fered. In the rigid-body approach the fractional coordi-
nates and anisotropic ADPs of the atoms can be refined
individually or can be also treated as “molecular para-
meters”.

3.2.1 Yet another example

This idea of describing the molecule via several rigid
segments was applied to the modulated crystal structure
of (6R,7aS)-6-(tert-butyl-dimethylsilanyloxy)-1-hydroxy-2-
phenyl-5,6,7,7a-tetrahydropyrrolizin-3-one, C19H27NO3Si
[12], reducing the number of refined parameters from
1396 for the individual refinement of the atomic modula-
tion functions for all non-H atoms to 775 for the refine-
ment of modulation functions of several molecular seg-
ments via rigid-bodies. The molecule and the definition of
the rigid segments is introduced in Fig. 8. However, this
refinement did not converge properly due to some correla-

tions between molecular parameters. As in this special
case the quality of the data was high and a sufficient large
number of observed satellite reflections (up to fourth or-
der) was present in the data set, in the final step all atoms
were treated individually also for the modulation func-
tions, but still keeping a very high data-to-parameter ratio.
Therefore this crystal structure can nicely serve as a test
example to verify the validity of the rigid-body approach.
Both models with individual atoms and rigid units gave
agreement parameters in the same order of magnitude
[12]. The ones for individual atoms are slightly lower, but
also the number of parameters is clearly larger.

As indicated by the diffraction pattern, the structure at
T ¼ 100 K is incommensurately modulated. The super-
space group is P21ðs10s3Þ �11 (monoclinic, b-unique) and
the components of the modulation wave vector q are
s1 ¼ 0:1422ð2Þ and s3 ¼ 0:3839ð8Þ [12]. The modulation
wave vector runs perpendicular to the monoclinic axis,
therefore the 21-screw axis is associated with a phase in-
version of the modulation wave. It was noticed, that the
intensities of the first-order satellite reflections are of the
same order of magnitude as the intensities of the main
reflections. Furthermore, satellite reflections up to fourth
order can be observed. Both features indicate a very
strong modulation in the structure suggesting displacive
atomic modulation functions with large amplitudes to-
gether with a significant modulation of the anisotropic
ADPs.

To describe the modulation, in the final model continu-
ous atomic modulation functions for displacive modulation
(with higher harmonics up to fourth order) and modulation
of the anisotropic ADPs (with higher harmonics up to sec-
ond order) are applied to all non-hydrogen atoms. The
hydrogen atoms are coupled via a riding model to their
corresponding carbon atoms. As an example demonstrat-
ing the strong modulation, Fourier maps in superspace are
presented for the Si atom in Fig. 9.

To analyse the structure, the molecule can be divided
into several units, as was shown in Fig. 8. Those units can
be interpreted as rigid bodies, because the interatomic dis-
tances and angles in those molecular parts are not affected
by modulation. As an example in Fig. 10a the bond
lengths d and angles J around the Si atom in the tert-
butyl-dimethylsilanyloxy unit are shown. As can be seen,
the deviation from the average value of the bond lengths
as function of the phase of the modulation t is smaller

Organic molecular compounds with modulated crystal structures 509

Fig. 8. The molecular structure of (6R,7aS)-6-(tert-butyl-dimethylsila-
nyloxy)-1-hydroxy-2-phenyl-5,6,7,7a-tetrahydropyrrolizin-3-one,
C19H27NO3Si [12]. The molecule can be divided into the three rigid
units phenyl ring (left), pyrrolizinone moiety (middle) and tert-butyl-
dimethylsilanyloxy group (right).



than Dd ¼ �0:045 Å, the deviation of the angles smaller
than DJ ¼ �0:7�, even though the amplitude for the dis-
placement of the Si atom along x3 is of about �0:9 Å (see
also Table 3 in [12]).

The five-membered ring of the pyrrolizinone moiety
linked to the tert-butyl-dimethylsilanyloxy group shows an
envelope structure, which also is supporting the rigid body
approach. It can be seen that the one carbon atom is on
average dave ¼ 0:625ð1Þ Å out of the plane defined by the
other four atoms, and that this distance is only slightly
affected by the modulation (Fig. 10b). The maximum de-
viation from this average value is Dd ¼ �0:03 Å with the
minimum absolute value dmin ¼ 0:594 Å and the maxi-
mum absolute value dmax ¼ 0:651 Å.

The modulation therefore mainly affects the orientation
– expressed by dihedral angles – between the three rigid
segments, changing the conformation of the molecule as a
whole, but not of the molecular units themselves. As ex-
ample the t-plot of a dihedral angle between the tert-bu-
tyl-dimethylsilanyloxy group and the pyrrolizinone moiety
is shown in Fig. 11. The deviation of the dihedral angle is
larger than Df ¼ �3:6� (see also Table 4 and Fig. 21 in
[12]).

3.3 Superstructures

The higher-dimensional superspace approach can also be
applied to commensurately modulated structures [75, 76].
The only condition to do so is to devide the data set of
measured reflections into a subset of main reflections and
a subset of superstructure reflections [21]. The latter ones
are the satellite reflections.

Therefore, a n-fold superstructure (n being a small inte-
ger number), can be described by the two different mod-
els: First, by the classical three-dimensional superstructure
with several independent formula units in the asymmetric
unit; the diffracted intensities are all treated in the same
way, indexed by three integers hkl. Second, by a commen-
surately modulated structure in (3þ 1)-dimensional super-
space with one formula unit per asymmetric unit; the dif-
fracted intensities are classified into main reflections and
satellite reflections, indexed by four integers hklm. This
discrimination of reflections can be justified by the fact,
that the superstructure reflections are – in general – some-
how weaker in intensity then the main reflections of the
underlying basic structure.

Both models describe the structure with the same effi-
ciency: the same number of parameters has to be refined,
the statistical results are of the same order of magnitude
(as they are supposed to be – it is the same structure de-
scribed with two different models) [77]. In the first model
several independent molecules have to be described, each
one with its own fractional coordinates and anisotropic
ADPs for the individual atoms. In the second model, one
molecule exists in the asymmetric unit to which a modula-
tion is superposed. The intermolecular atomic distances,
angles, dihedral and torsion angles of both models are
consistent. Depending on the structure under investigation,
the model described in superspace might need less para-
meters than the superstructure in three-dimensional space
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Fig. 9. The atomic modulation functions of the Si atom (orange
lines) superposed on the electron density for the two sections (x2; x4)
and (x3; x4) of (3þ 1)-dimensional superspace (for sake of clarity
two periods are drawn along x4). The horizontal width of each sec-
tion corresponds to 3:5 Å, showing the different amplitudes of the
atomic modulation funcions along the different directions in physical
space (x2 and x3, respectively) and especially the large amplitude of
the AMF along x3 of about �0:9 Å (redrawn from [12]).

a�

b�
Fig. 10. t-Plots to support the assumption of rigid bodies. As can be
seen, the displayed parameters are only slightly affected by the mod-
ulation (for sake of clarity two periods are drawn along the phase of
the modulation t). (a) t-Plots of selected interatomic distances and
angles around the atom Si atom in the tert-butyl-dimethylsilanyloxy
unit. (b) t-Plot of the distance d of the carbon atom out of the plane
defined by the other four atoms to demonstrate also the rigidity of the
envelope structure in the non-planar pyrrolizinone moiety.

Fig. 11. t-Plot of a dihedral angle between the tert-butyl-dimethylsila-
nyloxy group and the pyrrolizinone moiety showing the modulation
of the molecular conformation as function of the phase of the modu-
lation t (for sake of clarity two periods are drawn along t).



[76]. This is due to the fact, that the superspace model can
profit from some hidden intrinsic symmetry in the struc-
ture.

A first example is the room temperature structure of p-
chlorobenzamide, C7H6ClNO [78]. It is a non-planar non-
rigid mono-molecular organic compound, which is com-
mensurately modulated. The structure was described in a
classical approach as a threefold superstructure (Fig. 12),
but it can also be understood as a commensurately modu-
lated crystal structure described in (3þ 1)-dimensional
superspace. The three molecules show not only a different
orientation with respect to the lattice, but also different tor-
sion angles between the plane defined by the phenyl ring
and the one defined by the amide group: fA ¼ 19:0ð2Þ�,
fB ¼ 33:9ð2Þ�, fC ¼ 28:6ð2Þ� (the average value is
fave ¼ 27:2�). The diffraction pattern is characterized by a
clear difference in intensity between main reflections and
satellite reflections [78]. The (3þ 1)-dimensional super-
space symmetry is P�11ðs1s2s3Þ �11 with the commensurate
modulation wave vector q ¼ (1=3; 0; 0Þ, i.e. all three compo-
nents can be expressed by rational numbers. The space
group of the threefold superstructure is P�11. The structure
undergoes a phase transition at high temperature. During
the phase transition the superstructure or satellite reflec-
tions vanish in the diffraction pattern. The resulting non-
modulated high temperature phase has one molecule in the
asymmetric unit (f ¼ 27:3ð3Þ�) in space group symmetry
P�11 [78]. The high temperature structure resembles the basic
structure of the modulated model at room temperature. The
phase transition can therefore be understood as a loss of the
modulation at high temperature. The description in super-
space has the clear advantage, that a unique relation can be
established between the (modulated) room temperature
phase and the (non-modulated) high-temperature phase.
The same structural model serves as reference structure for
the commensurately modulated phase at room-temperature
and as structural model for the high-temperature phase
[78]. This means, that the superspace approach delivers a
unique image for the phase relation between both phases.

Another example for a commensurately modulated struc-
ture described within the higher-dimensional superspace ap-
proach is the low-temperature z-phase of bis(propylammo-
nium) tetrachloromanganate(II), [NH3(C3H7)]2MnCl4 [79].
It is explicitly stated by the authors, that it would have
been possible to describe the structure with a conventional
superstructure. But as the satellite reflections are rather

weak, this could have caused some problems during refine-
ment of that superstructure. Also in this case the descrip-
tion in superspace allows to better compare the z-phase
with the neighbouring "-phase, stable at higher tempera-
ture. This E-phase is an incommensurately modulated
phase [80]. The modulation in this structure is caused by a
hindered freezing of the dynamical disorder of the propyl-
ammonium ions caused by an interlayer of terminal methyl
groups and by an ordering of the associated hydrogen
bonds.

3.3.1 Structures with large Z0

A lot of crystal structures are built up by more than one
independent molecule (or formula unit) in the asymmetric
unit. An investigation by Brock in 1996 through the struc-
tures stored in the Cambridge Structural Database [81]
resulted in about 8% of all entries to present compounds
with two or more such molecules [54]. It was assumed,
that this result is biased down due to the fact that such
structures are difficult to solve and difficult to refine and
that this number of 8% is supposed to be somewhat larger.
The parameter specifying the number of molecules in the
assymetric unit is called Z 0 [54]. It can be calculated by
the number of formula units in the unit cell Z divided by
the number of independent general positions. It is worth
mentioning, that in general bond lengths and angles of
the independent molecules are quite similar and that the
molecules are somehow related to each other via pseudo-
symmetry. The molecules differ by small but significant
deviations from each other.
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Fig. 12. The three molecules A, B and C in the asymmetric unit of
the threefold superstructure of p-chlorobenzamide at room tempera-
ture, viewed along the crystallographic c-axis.

a�

b�
Fig. 13. The eight crystallographically independent molecules in the
room temperature phase of cholesterol (without hydrogen atoms). In
(a) the asymmetric unit is shown along the crystallographic c-axis, in
(b) the molecules are displayed parallel to their mean plane. The
molecular pairs which are pseudosymmetrically related by a 21-screw
axis are A––E, B––F, C––G and D––H (redrawn from [82]).



The structure of cholesterol serves as example with
Z 0 ¼ 8 for the room-temperature phase [82]. A twofold
rotational pseudosymmetry along the crystallographic c-axis
was reported. In Fig. 13 the eight independent molecules are
shown. The high-temperature phase at T ¼ 310 K has even
a double amount of independent molecules in the asym-
metric unit, i:e: Z 0 ¼ 16. Also in this phase the molecules
are related to each other via non-crystallographic pseudo-
screw axes [83].

The interactions between the independent molecules are
important for the understanding of the crystal packing of
the Z 0 structures in special, but also for the understanding
of order and packing in solid state matter in general [84].
The origin of the large Z 0 structures in alcohols and ster-
oids was seen in the “conflicting driving force towards
achieving saturated hydrogen bonding of the hydroxyl
functionalities on the one hand and close van der Waals
packing of the large lipophilic substituent on the other”
[84]. And again, “This complexity and pseudosymmetry
was rationalised as resulting from the fact that the steric
demands of the steroid portion of the molecule are quite
different from the optimal arrangement of ionic or hydro-
gen bonding moieties yet both must be simultaneously ac-
commodated” [84].

All this resembles somehow to the situation which is
also present in modulated crystal structures and there
might be a good chance to describe (and perhaps to better
understand?) those structures with large Z 0 as commensu-
rately (or incommensurately) modulated structures while
applying the higher-dimensional superspace approach. In
such case it might be necessary to chose the modulation
wave vector q not along one of the crystallographic axes
(to generate a simple superstructure) but maybe, depend-
ing on the structure under investigation, in a diagonal way.
An example (the pharmaceutical compound already dis-
cussed at the end of Section 3.2 in the context of rigid-
body refinement) is discussed in detail in [12] with 35
independent molecules, the modulation wave vector q in
the superspace model lying in the ða*; c*Þ plane with
q ¼ ð0:143; 0; 0:384Þ.

The [M(H2O)2(15-crown-5)](NO3)2 complexes with
M ¼ Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, are a good
example for structures with large Z 0 and strong hydrogen
bonds. Intensive investigations have been performed by
Brock and coworkers in this family of compounds includ-
ing structures with large Z 0, polymorphism, disorder and
modulation [85–89]. Some attempts to understand and de-
scribe several of those structures as (commensurately
modulated) superstructures are presented.

A model to describe the structure of [Cu(H2O)2(15-
crown-5)](NO3)2 with Z 0 ¼ 10 in (3þ 1)-dimensional
superspace is proposed in [90]. For the Z 0 ¼ 10 super-
structure in space group Pn the crown complexes are or-
dered but present two different orientations. They reveal a
staircase like periodic pattern in the ða; cÞ-plane: along the
a-axis the two orientations alternate and along the direc-
tion �3aþ 2c the two orientations form a 10 molecules
“periodic unit” with five consecutive crowns in one and
the following five in the other orientation. By treating the
weaker superstructure reflections as satellite reflections,
the structure can be described in the superspace approach

as a commensurately modulated structure. The closest
strong superstructure reflections next to the mains reflec-
tion have been defined as first order satellites. Hence the
modulation vector is q ¼ ð1=2; 0;�2=5Þ. As superpspace
group the non–centrosymmetric Pcðs10s3Þ s was applied.

3.3.2 Commensurate vs. incommensurate

A first hint, if a structure has to be treated as a commen-
surately modulated or as an incommensurately modulated
structure, is given in the diffraction pattern by the peak
positions of the satellite reflections. As explained in Sec-
tion 2.2 in Eq. (3), those positions are described with respect
to the reciprocal lattice L* ¼ fa*; b*; c*g by the compo-
nents of the modulation wave vector q ¼ ðs1; s2; s3). If at
least one of the components has a value, which can not be
expressed by the ratio of two small integer numbers, then
the structure is incommensurately modulated (and does
not show three-dimensional periodicity). On the other
hand, also variation of at least one of the components
s1; s2; s3 with temperature, pressure or another external
parameter is a clear sign for incommensurability (even
though at a certain temperature, for example, then this va-
lue might be rational).

It was shown above in this section, that commensu-
rately modulated structures can be described either as a
three-dimensional superstructure or within the higher-di-
mensional superspace approach. The other way around
also incommensurately modulated structures can be de-
scribed not only within the higher-dimensional superspace
approach, but also by applying the superstructure ap-
proach, while approximating the irrational component of
the modulation wave vector q by a rational number. As
larger the superstructure, as better the approximation. It
was, however, already stated by de Wolff in the early days
of modulated structures [6], that the resulting space groups
of the approximated superstructure might lack symmetry
relations, which are present in the higher-dimensional
superspace groups. Such description then do not ade-
quately account for the true nature of the modulated struc-
ture. Some indication to this might be given in the diffrac-
tion pattern, when the superspace group can explain
systematic absences of reflections, which might not be
possible with the three-dimensional space group of the
(approximated) superstructure [21]. In addition, to choose
a rational approximation can be rather ambiguous, too.
Might e.g. the irrational number f ¼ 0:1832 . . . be better
described by the rational approximation a ¼ 1=5 ¼ 0:2 or
better by b ¼ 1=6 ¼ 0:166�66? The first one will give a five-
fold, the latter one a six-fold superstructure. A better
choice (closer approximation) for this example is the ra-
tional number c ¼ 2=11 ¼ 0:0:1818 in an 11-fold super-
structure (but from a practical point of view, is an 11-fold
superstructure still feasable in the crystal structure refine-
ment process with respect to number of parameters and
with respect to CPU time?). And what is the effect for the
resulting five-, six- or 11-fold superstructure approxima-
tion, which do represent three different models for just
one and the same structure under investigation? A simple
model is given in Fig. 14, showing, that the three models
result in different orientations of the molecules. It can be
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seen immediately, that due to the different periodicities the
resulting pattern of the orientations of the molecules differ
significantly (but all three models are approximations to
the same aperiodic structure under investigation). A deeper
discussion on that is given in [91].

And how is the relation between superstructure approx-
imation and the true incommensurately modulated struc-
ture? The incommensurately modulated low-temperature
phase of biphenyl (Section 3.1) will serve again as exam-
ple. The structure below T ¼ 20 K was described in a two-
fold superstructure, i.e. the modulation wave vector compo-
nent s2 ¼ 0:46 as can be found in the diffraction pattern
was approximated to the rational value s2 ¼ 1=2 [60]. As
consequence, in this case the wavelength l of the modula-
tion wave was shortened from l ¼ j 1

s2b
j ¼ 1
0:46b
 � 2:2b to

l ¼ j 1
0:50b
j ¼ 2b. By doing so, a twofold superstructure

approximation with unit cell a� 2b� c with respect to
the unit cell at room temperature is generated. Main char-
acteristic of this superstructure approximation is the tor-
sion of the molecule with the torsion angle between the
planes of the phenyl rings f ¼ 10:2�. Neighbouring mole-
cules along b show an opposite sense for the torsion,
while neighbouring molecules along a and c have the
same sense of torsion. Also in the superstructure this tor-
sion of the molecule results in a loss of the inversion sym-
metry of the molecular structure and of the crystal struc-
ture. The resulting space group of the superstructure is Pa
[60]. The structure refinement of the superstructure how-
ever suffered by the fact, that different scale factors had to
be applied for the main and for the satellite reflections.

This approximation has as direct consequence that all
molecules show a “complete distortion” with a torsion an-
gle of f ¼ �10:2� (for neighbouring molecules along b in
opposite directions). The values of this torsion angle f is
schematically illustrated in Fig. 15a as the amplitude of a
sinusoidal function with wavelength l ¼ 2b. The maxima
(and minima) of this function superpose with the molecu-
lar positions. In contrast in the incommensurately modu-
lated structure the wavelength of the sinusoidal function
has the proper value l ¼ 2:2b, the maxima and minima

are shifted away from the molecular positions (Fig. 15b).
As consequence, a large number of molecules are almost
undistorted [61], i.e. the molecules are more or less planar
(f ¼ 0�). It can be seen in Fig. 15, that in a short range,
i.e. for the molecules 1; 2; 3 the superstucture approximation
can reproduce the molecular conformation in a decent way.
But this does not work in a long range, the superstructure
approximation fails completely to reproduce the torsion an-
gles of the molecules 6; 7; 8 and for the molecules 9; 10 it
even predicts torsion angles with opposite directions.

A better approach, but still an approximation are the mod-
els discussed by Dzyabchenko [67], describing the modu-
lated structure of biphenyl at low temperature with a 13-fold
and 14-fold superstructure, respectively, approximating the
incommensurate component of the modulation wave vector
with s2 ¼ 6=13 ¼ 0:4615 and s2 ¼ 6=14 ¼ 0:4286.

The superstructure approximation for an incommensu-
rately modulated structure can give a first glance on the
structure and can serve as a starting model to understand
the crystal packing and establish some rough ideas on mo-
lecular interactions. But – as it is only an approximation,
which superposes a periodicity on an aperiodic structure –
it is not reflecting the true nature of the crystal structure.
It can not account for the structural flexibility of the mole-
cular conformation.

3.4 Macromolecular compounds and “bio-crystals”

It was shown up to now, that an aperiodic crystal structure
is not limited to inorganic compounds and metals but also
takes place in structures composed by small molecules –
and perhaps the modulation of a molecular crystal struc-
ture occures more often then generally expected.

It is worth mentioning that there are also reports on
superstructures and weak additional reflections in the dif-
fraction pattern of protein crystal structures. Some of them
shall be briefly discussed here as kind of representative
examples:
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Fig. 14. Schematic drawing on three simple superstructure approxi-
mations while describing the irrational number f ¼ 0:1832 . . . by the
rational approximation a ¼ 1=5, b ¼ 1=6 and c ¼ 2=11. Those approxi-
mations result in n-fold superstructures with n ¼ 5; 6 and 11, respec-
tively. The arrows represent one molecule in two different orienta-
tions or conformations (orange down and blue up). Please note, that
the three models are significantly different while they shall describe
the same aperiodic crystal structure under investigation.

a�

b�
Fig. 15. Schematic drawing representing the problem of a superstruc-
ture approximation. The sinusoidal wave represents the modulation of
the torsion angles, the blue circles the molecular positions along b
and the orange arrows the corresponding magnitude and direction of
their torsion angles f. In (a) the approximation is shown, with the
(commensurate) wavelength of the modulation wave vector being
l ¼ 2b. As result all molecules have equal, i.e. maximum magnitudes
of their torsion angles. In (b) the true (incommensurate) wavelength
l ¼ 2:2b is applied, and the magnitude of the torsion angles varies
throughout the whole crystal (redrawn from [61]).



Aschaffenburg et al. [92] observed in the precession
photographs of goat a-lactalbumin additional sharp reflec-
tions along the crystallographic a*-direction, appearing in
pairs and being equidistant from the main reflections. The
authors “eliminated” those reflections by soaking the crys-
tals in 1 mm-potassium chloroplatinite.

Gouaux and Lipscomb observed in the diffraction pat-
tern of native aspartate carbamoyltransferase (EC 2.1.3.2,
from Escherichia coli) ligated with l-aspartate and phos-
phate clearly visible but weak superlattice reflections [93].
These superlattice reflections have been interpreted by the
authors to arise maybe from some periodic perturbation of
the molecular conformation or packing.

A (commensurately modulated) twofold superstructure
along the crystallographic c-axis was reported for the F420-
dependent methylenetetrahydromethanopterin dehydrogen-
ase by Warkentin et al. [94]. In this structure the transla-
tional symmetry is broken by small reorientations of the
hexameric structural units, while the reorientations are re-
lated to the crystal packing. It was reported that the addi-
tional superstructure reflections do account for roughly
14% of the overall diffraction intensity.

Lovelace, Borgstahl and coworkers reinvestigated an in-
commensurately modulated structure of a bovine profilin:
b-actin complex from calf thymus [95–97]. This modu-
lated structure was dicovered by Schutt et al. [98] and
shows an extensive intermolecular network with satellite
reflection in the diffraction pattern and a superstructure
with pseudosymmetry. The modulation occurs along the
crystallographic b-axis, which corresponds to an ‘actin rib-
bon’ formed by the crystal lattice. For the origin of the
modulation it was assumed, that the protein is undergoing
a conformational change affecting the neighbouring mole-
cules [96]. The intensities of the satellite reflection are
about 15� weaker then those of the main reflections.

4. Conclusions and outlook

The crystal-chemical analysis of incommensurately modu-
lated crystal structures can be performed in an elegant
way applying the higher-dimensional superspace approach.
This approach allows the recovery of higher-dimensional
translational symmetry, i.e. periodicity, which is lost in the
three-dimensional aperiodic crystal structure. The super-
space approach has been extensively used during the last
three decades, is now well established and can be applied
to all kinds of materials: inorganic matter, metals and al-
loys, organic and organometallic compounds with small
molecular and macromolecular structures, or even mag-
netic structures.

Concerning modulated molecular compounds one has
to respect some internal freedom in the molecules. The
individual molecules might be built by several molecular
segments, which act themselves as rigid-units. These rigid
units have some possibility, some freedom to rotate or
bend with respect to each other. Very important for a bet-
ter understanding is also to analyse the intermolecular in-
teractions as function of the phase of the modulation, like
crystal packing and hydrogen bonding scheme, as both
might strongly influence the molecular conformation. Ap-

plying the superspace formalism, an exact crystal-chemical
analysis of the crystal structure as function of the phase of
the modulation t is therefore possible.

The application of the superspace approach is, how-
ever, not limited to the analysis of aperiodic crystal struc-
tures. It can also be applied to the analysis of the relations
between modulated and non-modulated structures and be-
tween incommensurately modulated structures and (com-
mensurately modulated) superstructures. In many cases an
incommensurately modulated structure transforms to a
three-dimensional periodic high-symmetry phase on in-
creasing temperature and/or to a commensurately modu-
lated phase, the so-called lock-in phase, on decreasing
temperature. The superspace approach represents the tool
to describe this sequence of phases with one unique mod-
el, independent of the specific value of the modulation
wave vector components being irrational or rational num-
bers, i.e. independent of the structure being incommensu-
rately or commensurately modulated.

The structures with large Z 0 are promising candidates
to be described within the higher-dimensional superspace
approach. Some of those structures can be interpreted as
(commensurately modulated) superstructures, and some
might be incommensurately modulated. The superspace
approach can help to clarify the relation between the mo-
lecules, their interactions and the general principles of
crystal packing. And it also might help to clarify the rela-
tion between different modifications and different mem-
bers of families of compounds with different stoichiome-
try.

As it is stated in [96], the general approach in protein
crystallography is to discard a sample, when a modulated
diffraction pattern, i:e: a diffraction pattern with strong
main reflections and additional weak satellite reflections,
is observed, and to go for another sample, which “behaves
better”. . . . The reason might be mainly seen in the lack
of computer programs for data integration and reduction
and also for structure solution and refinement – and in
some lack of consciousness within the concerned commu-
nity, too. But as those problems are already identified, the
general situation will probably improve within the next
years.

One can therefore conclude, that in general the applica-
tion of the superspace approach to the description and
crystal-chemical analysis of superstructures and of incom-
mensurately modulated structures for molecular com-
pounds will become more and more familiar to a larger
community. This trend is supported by the technical devel-
opment: Today diffractometers with two-dimensional de-
tectors like CCD detectors and image plates are wide-
spread available. With such detectors large data sets of
high accuracy even for weak intensities can be measured
in feasable time. Also computers and processors can han-
dle now such large data sets with up to several tenthou-
sand reflections without problems. And finally – and
maybe most important – computer programs and software
have been developed, which make it possible also for non-
experts to apply the higher-dimensional superspace ap-
proach for treating the measured data and for interpreting
the modulated structures under investigation in the crystal-
chemical analysis. Today, within the higher-dimensional
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superspace approach a complete picture of the true nature
of the compounds and an accurate structural model for
aperiodic crystal structures can be established by every-
body, who has to do so.
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[1] Pérez-Mato, J. M.; Chapuis, G.; Farkas-Jahnke, M.; Senechal,
M. L.; Steurer, W.: Ad Interim Commission on Aperiodic Crys-
tals, International Union of Crystallography, Report of the Ex-
ecutive Committee for 1991. Acta Crystallogr. A48 (1992) 922–
946.

[2] Janssen, T.; Janner, A.: Incommensurability in crystals. Adv.
Phys. 36 (1987) 519–624.

[3] Janssen, T.; Janner, A.; Looijenga-Vos, A.; de Wolff, P. M.: In-
commensurate and commensurate modulated structures. In Int.
Tabl. Crystallogr., Vol. C by Wilson, A. J. C. (ed.), pp. 907–
955. Springer-Verlag, 2006.

[4] van Smaalen, S.: Symmetry of composite crystals. Phys. Rev. B
43 (1991) 11330–11341.

[5] Tolédano, J.-C.; Berry, R. S.; Brown, P. J.; Glazer, A. M.; Met-
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[26] Maciá, E.: The role of aperiodic order in science and technol-
ogy. Rep. Prog. Phys. 69 (2006) 397–441.

[27] Bolotina, N. B.: X-ray diffraction analysis of modulated crys-
tals: Review. Crystallogr. Rep. 51 (2006) 647–658.

[28] Christensen, J.: Layers of order – the past, present and future of
superspace crystallography. Crystallogr. Rev. 16 (2010) 105–
114.

[29] Steurer, W.; Haibach, T.: Reciprocal-space images of aperiodic
crystals. In Int. Tabl. Crystallogr., Vol. B by Shmueli, U. (ed.),
pp. 486–532. Springer-Verlag, 2006.

[30] van Smaalen, S. (ed.): Incommensurate crystallography of
modulated and composite crystals. Z. Kristallogr. 219, 11 (2004)
680–767.

[31] Steurer, W.; Deloudi, S.: Crystallography of quasicrystals. Sprin-
ger-Verlag, 2009.

[32] Cummins, H. Z.: Experimental Studies of Structurally Incom-
mensurate Crystal Phases. Phys. Rep. 185 (1990) 211–409.
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