Towards pump-probe resonant X-ray diffraction at femtosecond undulator sources
-
Gerhard Ingold
Abstract
The first tunable undulator source for femtosecond hard X-rays in the range 4–12 keV is now in operation at the SLS storage ring. The source combines accelerator and laser technology relevant for future seeded free electron lasers. It provides inherently synchronized femtosecond laser ‘pump’ and X-ray ‘probe’ pulses to enable time-resolved diffraction and absorption experiments. By using X-ray diffraction to probe laser-induced coherent optical phonons in bulk bismuth, we estimate an X-ray pulse duration of 140 ± 30 fs FWHM with timing drifts below 30 fs rms measured over 5 days. The excellent spatial and temporal stability of the source allows quantitative measurement of ultrafast lattice dynamics and associated phase transitions in real space with atomic resolution and instrumental time resolution of 85 fs rms. Studying semimetals such as bismuth, we have demonstrated (i) grazing incidence femtosecond X-ray diffraction on single crystals that allows us to more completely characterize the ultrafast structural dynamics of solids, and (ii) optical control of real space coherent atomic motion. Both methods will be used to study the dynamics of photo-induced phase transitions in strongly correlated systems such as manganites. The time resolution of such measurements could be improved by one order of magnitude at future XFEL facilities at much higher flux. Femtosecond linear and non-linear resonant X-ray scattering employing full polarization control both in the soft (0.3–3 keV) and hard (4–15 keV) X-ray regime will become feasible which allows direct measurement of orbital degrees of freedom. However, a laser and hard X-ray cross-correlation technique with sufficient temporal resolution and signal-to-noise ratio appropriate for single shot operation has yet to be realized. Again, laser seeding using a phase stabilized few-cycle (5–7 fs) laser may be a viable option to generate <10 fs X-ray pulses.
© Oldenbourg Wissenschaftsverlag
Articles in the same Issue
- Preface: Photocrystallography
- Out-of-equilibrium charge density distribution of spin crossover complexes from steady-state photocrystallographic measurements: experimental methodology and results
- Light-induced phase separation (LIPS) into like-spin phases observed by Laue neutron diffraction on a single crystal of [Fe(ptz)6](BF4)2
- Neutron photocrystallography: simulation and experiment
- Static and time-resolved photocrystallographic studies in supramolecular solids
- State of the art and opportunities in probing photoinduced phase transitions in molecular materials by conventional and picosecond X-ray diffraction
- Real-time studies of reversible lattice dynamics by femtosecond X-ray diffraction
- Towards pump-probe resonant X-ray diffraction at femtosecond undulator sources
- Exploiting EXAFS and XANES for time-resolved molecular structures in liquids
- Home-based time-resolved photo small angle X-ray diffraction and its applications
- DFT study of crystalline nitrosyl compounds
- Theoretical study on the structure of the ground state and photo-induced metastable states of [M(CN)5NO]2− (M = Ru, Fe), and mechanism of the photo-rearrangement among them
- DFT study of metastable linkage isomers of six-coordinate ruthenium nitrosyl complexes
- Excited state isomerization in photochromic ruthenium complexes
- Applications of photocrystallography: a future perspective
Articles in the same Issue
- Preface: Photocrystallography
- Out-of-equilibrium charge density distribution of spin crossover complexes from steady-state photocrystallographic measurements: experimental methodology and results
- Light-induced phase separation (LIPS) into like-spin phases observed by Laue neutron diffraction on a single crystal of [Fe(ptz)6](BF4)2
- Neutron photocrystallography: simulation and experiment
- Static and time-resolved photocrystallographic studies in supramolecular solids
- State of the art and opportunities in probing photoinduced phase transitions in molecular materials by conventional and picosecond X-ray diffraction
- Real-time studies of reversible lattice dynamics by femtosecond X-ray diffraction
- Towards pump-probe resonant X-ray diffraction at femtosecond undulator sources
- Exploiting EXAFS and XANES for time-resolved molecular structures in liquids
- Home-based time-resolved photo small angle X-ray diffraction and its applications
- DFT study of crystalline nitrosyl compounds
- Theoretical study on the structure of the ground state and photo-induced metastable states of [M(CN)5NO]2− (M = Ru, Fe), and mechanism of the photo-rearrangement among them
- DFT study of metastable linkage isomers of six-coordinate ruthenium nitrosyl complexes
- Excited state isomerization in photochromic ruthenium complexes
- Applications of photocrystallography: a future perspective