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Abstract. Some ideas are presented on the geometrical
factors governing structure and formation of axial quasi-
crystals with 5- and 7-fold symmetry, respectively. First,
the importance of thin atomic layers is discussed for the
growth of decagonal quasicrystals. They are the only long-
range ordered structural units carrying information on the
local non-crystallographic symmetry of the constituent
clusters. Second, the consequences of local polysynthetic
twinning for the formation of pentagonal and heptagonal
quasicrystals are demonstrated. Third, the special relation-
ship of the pB-phase, (Co,Ni);_.Alj,,, to the decagonal
phase and its periodic average structure is discussed as
well as its role as template for the formation and growth
of decagonal Al1—Co—Ni.

Introduction

Fifty years ago, Fritz Laves presented his ideas on the
factors governing the structure of metals (Laves, 1956).
He came to the conclusion that “as a consequence of these
principles (space-, symmetry- and connection-principle)
the stoichiometrical formulae of intermetallic compounds
are frequently fixed rather by the geometrical properties
... than by the formal valencies of the components”. By
Laves’s principles some peculiarities of structures could be
explained that were not covered by “the three factors con-
sidered by Hume-Rothery (a) size factor, (b) electrochemi-
cal factor, (c) valence electron concentration”.

It is well known that in the case of quasicrystals (QCs)
size factor (Elser, 1985; Chen etal., 1987; Guo etal,
2002) and valence electron concentration (cf. Trambly de
Laissadiere et al., 2005) play a crucial role for their stabi-
lity. All these parameters, however, neither explain the ob-
served symmetries and structures of QCs nor show how
they form. Therefore, we will discuss the importance of
further geometrical parameters, local twinning, thin atomic
layers and the periodic average structure, for symmetry,
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formation and growth of decagonal QCs (DQCs). The fol-
lowing points will be addressed:
1. What favors quasiperiodicity over periodicity?
2. Why are stable QCs always 5-fold symmetric?
3. How do DQCs grow, what are the real matching or
overlapping rules?

Periodicity versus quasiperiodicity

Why are crystal structures almost always periodic and in
what cases do they get quasiperiodic? What are the funda-
mental differences between periodic and quasiperiodic
structures? Which parameters favour quasiperiodicity?

Any crystal, be it periodic or aperiodic, is built from a
finite number of different basic structural units (consisting
of atoms, ions, molecules, complex ions, clusters ...) or
unit cells contrary to amorphous solids and liquids. Conse-
quently, these basic units have to be repeated in a given
order over and over again. This forms the physical basis
of the principle of repetitivity.

If there are not too strong constraints based on non-
crystallographic symmetries or special construction rules
of the basic structural units, repetitivity is usually realized
in form of translational periodicity. Even fullerene mole-
cules or viruses with almost perfect icosahedral symmetry,
for instance, form periodic crystal structures. So does the
great many of intermetallic phases built from icosahedral
coordination polyhedra (Daams, Villars, 2000).

However, if there are at least two different unit cells,
quasiperiodicity can be forced by special matching rules
even if the unit cells show crystallographic symmetry
(Fig. D).

In case of structures with translational symmetry, repe-
titivity corresponds to additivity on the scale of unit cells.
Additivity is the natural growth principle of simple crystal
structures with isotropic atomic interactions such as they
exist between atoms of the noble gases or some metallic
elements. The additivity principle under the constraint of
maximum packing density leads to either cubic (ccp) or
hexagonal (hcp) close sphere packings. Although the pack-
ing density is in both cases the same, 7t/ V18 =0.74.. .,
the shape of the coordination polyhedra differs from the
first shell up. The long-range order of the two structure
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Fig. 1. (a) Pentagonal and (b) heptagonal tiling generated by the
dual-grid method (Weber, 1999). The pentagonal tiling (Penrose til-
ing) is based on two different rhombic unit tiles, the heptagonal tiling
on three.

types is different as well. This is reflected in the distribu-
tion of close-packed atomic planes, which are stacked
along [001] in case of hcp and perpendicular to the facets
of an octahedron {111} in case of ccp. It is obvious that
large energetically favorable multi-shell clusters with octa-
hedral symmetry would prefer cubic close packing.

Translational periodicity as geometrical building princi-
ple pays off energetically in the case of small-unit-cell
structures. Particularly, if the Friedel oscillations of the
atomic pair potentials are in registry with the lattice peri-
od. The benefits of periodicity are not so obvious in the
case of complex metallic alloys (CMAs), i.e. large-unit-cell
structures with lattice parameters far beyond the interac-
tion potentials of single atoms, which are less than ~10 A
in case of Al, Co, Ni, for instance (Widom et al., 2000).

The formation of CMAs is easier to understand if they
result from interactions of mutually incommensurate sub-
systems competing in a structure. Even if the basic unit
cell is very small and the underlying modulation principle
simple, rather large lattice parameters can be the conse-
quence. For instance, Au—Cu forms anti-phase domain
structures with modulation wavelengths up to ~80 A, con-
tinuously varying with the electron concentration (Sato
and Toth, 1961; 1962).

Another kind of incompatibility arises, if the structural
building units have non-crystallographic symmetries and
periodic packing becomes less efficient than quasiperiodic
one. This does not only refer to the packing density but
also to the number of realizations of, for instance, energe-
tically favorable clusters (Jeong, Steinhard, 1994; Stein-
hardt et al., 1998).

The question is why aperiodic structures are formed
instead of large approximants, why periodicity is sacri-
ficed. Approximants are either periodic crystal structures
based on the same structural units (clusters) as QCs or
commensurate superstructures of a common basic structure
in case of incommensurately modulated structures (IMSs),
respectively. QCs are often accompanied by approximants
with slightly different stoichiometry. However, these are
never large-unit-cell approximants. And a devil’s staircase
has never been found, i.e. a series of higher and higher
approximants, as it is known for some IMSs (Cummins,
1990). Commensurate superstructures are lock-in phases,

and it is not possible to move the modulation wave
through a commensurately modulated crystal without
changing its energy as it is the case for IMSs. For a QC, it
is not just a change in the period of a modulation wave
that makes an approximant to a QC. QCs represent al-
ready a kind of lock-in state regarding symmetry, approx-
imants break the symmetry. While IMSs have a lower
symmetry than their periodic average structure (PAS), QCs
have a higher one. A continuous variation of the wave-
length of an IMS, for instance by variation of temperature,
produces continuously changing lattice parameters. Ra-
tional approximants of a QC change their lattice para-
meters with increasing order stepwise, by powers of 7 in
the case of DQCs, for instance.

Consequently, there must be a fundamental difference
even between high-order approximants and QCs that favors
QCs significantly. The advantage of an approximant is its
periodicity and therewith its simpler construction principle,
however, only if it is an low-order approximant. The ad-
vantage of a QC is its higher symmetry that is adapted to
the symmetries of the constituent clusters. And there must
be a simple construction principle compared with a high-
order approximant based upon that higher symmetry.

Of course, in a discussion on the stability of QCs ver-
sus that of approximants, the configurational entropy has
also to be taken into account. Let us consider a structure
just on the scale of the unit cell. In case of periodic struc-
tures, there is only one unit cell, no disorder of uniquely
decorated cells is possible, the resulting entropy is zero. In
case of quasiperiodic structures (tilings), the quasilattice
has at least two unit cells. Randomization of the quasilat-
tice and therewith of the distribution of the different unit
cells can increase the entropy significantly (see, for in-
stance, Elser, 1996; Gihler et al., 2002). If the quasilattice
is randomized under the constraint that the average struc-
ture remains quasiperiodically, i.e. the perpendicular-space
fluctuations of the cutting space remain bounded, then the
diffraction pattern shows still sharp Bragg reflections ac-
companied by some diffuse scattering.

The role of symmetry

2D and 3D lattice periodicity is compatible with n¢ = 1-,
2-, 3-, 4- and 6-fold rotational symmetry (i.e. crystallo-
graphic symmetry). If one lattice point is a point of global
n‘-fold symmetry then all other lattice points are such as
well. Rotation around any of these points brings the lattice
n-times into coincidence with itself. On the contrary, a
2D or 3D quasilattice cannot contain more than a single
point of global non-crystallographic n"“-fold symmetry.

All known stable QCs show 5-fold, 10-fold or icosahe-
dral symmetry (cf. Steurer, 2004, and references therein).
There are a few reports on QCs with 8- or 12-fold symme-
try. However, they are metastable and/or of poor quality.
Not a single QC with any other non-crystallographic sym-
metry has ever been reported. Why? For the hypothetical
case of 2D structures, it has been shown that only QCs
based on quadratic irrationalities, a + b \/E (a, b, c... ra-
tional numbers), should be energetically stable (Levitov,
1988). Consequently, only QCs with 5-, 8-, 10- or 12-fold
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symmetries would be allowed. 3D QCs, however, could
also be based on cubic irrationalities leading to 7- and 9-
fold symmetry, respectively (Pelantova, Twarock, 2003).
The 2D quasiperiodic part of a QC with axial n-fold sym-
metry can be described as cut of a 4D hypercrystal in case
of quadratic irrationalities and of a 6D hypercrystal in
case of cubic irrationalities. The nD embedding space con-
sists of the physical or parallel space and the perpendicu-
lar space orthogonal to it, V = Vi vt (cf. Steurer, Hai-
bach, 1999b). In the case of a 6D embedding space, the
dimension of the perpendicular space would be higher
than that of the physical space. There would be two types
of phason fields instead of just one for the actually known
QOCs (Hu et al., 1994).

It is not too surprising that 5-fold symmetry is the sym-
metry of QCs, if one takes into account that icosahedral
coordination is the most frequent atomic environment type
(AET) in intermetallic phases (Daams, Villars, 2000).
However, since icosahedra cannot be packed without gaps,
they are distorted and/or mixed with other AETs. Further-
more, not only in solids but also in undercooled metallic
melts icosahedral short-range order may not be the excep-
tion (Kelton, 2003).

What about AETs with, for instance, 7-fold symmetry?
First of all there do not exist regular or semiregular poly-
hedra (Platonic or Archimedian solids) with more than
5-fold symmetry. However, polyhedra with only axial n-
fold symmetry are possible for arbitrary n. Indeed, (dis-
torted) seven-membered rings are very common in ternary
borides. The o0P24-YCrB, structure type (Dub etal.,
1985), for instance, with more than 90 known representa-

(PSP)5(PSP)

Fig. 2. Fractal N-grammal growth model for n =5 and n=7. The
growth takes place by twinning along the free edges of the n-gons
and clusters of n-gons. In case of the pentagon, after the second twin-
ning cycle, decagons (green line) appear, consisting of two hexagons,
H, and one boat tile, B, that are typical for decagonal quasicrystals. A
decagon of the type found in decagonal Al—Co—Ni, decorated with
Al (blue) and TM (red) atoms, is shown. In case of heptagons, even
the first twinning cycle leads to overlapping of neighboring hepta-
gons.

tives, is built from heptagonal bipyramids decorating the
vertices of a tiling of squashed hexagons. The heptagonal
bipyramids consist of a heptagonal boron ring capped by
the large rare earth atoms. The voids left by the hepta-
gonal bipyramids correspond to pentagonal bipyramids
capped by the smaller transition metal (TM) atoms.

Why then are heptagonal quasicrystals not known? A
tiling with 7-fold symmetry can be constructed by the
dual-grid method as easily as one with 5-fold symmetry
(Fig. 1). It gets more complicated, however, if we try to
construct a structure based on a cluster with 7-fold sym-
metry. We demonstrate this on the example of local poly-
synthetic twinning of a pentagonal and a heptagonal cluster
(e.g., pentagonal and hexagonal bipyramids, respectively).
The first pentagon P (nucleus) is twinned along its edges:
P+ 5P — P5P. The twinning is repeated at the edges of
the 7’-times larger (in diameter) aggregates: PSP + 5P5P

Fig. 3. Pentagrammal symmetry (cf. Janner, 1992) in direct and reci-
procal space (diffraction pattern of decagonal Al—Co—Ni).
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Fig. 4. N-grammal growth model for n =5 and 7, respectively. The
n-gons are occupied by atoms. The atomic sizes are chosen so that
the n atoms around the central atom touch each other and the central
atom as well. The red crosses mark the mismatch regions.

— (P5P) 5(P5P) (Fig.2) and so forth. During crystal
growth twinning means that the atomic structure grows
until a certain termination plane (twin plane) is reached.
Then further growth continues by repeating the structure
formation process in the reverse direction.

What we obtain by this kind of local polysynthetic
twinning of a pentagon is a fractal pentagon-rhomb tiling
with pentagrammal symmetry (cf. Janner, 1992), which is
always present in diffraction patterns of DQCs (Fig. 3).
There are no overlaps of pentagons, however, there are
some spandrels left that can be filled by further pentagons
and boats. We also see, starting from a certain size,
patches of tiles (clusters consisting of hexagons, H, and
boats, B, see upper right drawing of Fig. 2) can be identi-
fied that cover the tiling.

The local twinning procedure applied to heptagons leads
already in the first coordination shell to overlaps (Fig. 2). If
we decorate the pentagons and heptagons by atoms in an
appropriate way (Fig. 4) then we do not have packing pro-
blems in case of the pentagonal clusters. In contrast, atoms
of the heptagonal clusters partially overlap and leave some
empty space as well (marked by red crosses in Fig. 4). This
makes a further growth in this way impossible.

Higher-dimensional description of QCs

The simplest example of a QC is the 1D Fibonacci se-
quence (FS). It can be generated either by substitution
rules or as a cut of a 2D hypercrystal (Fig. 5). The substi-
tution rule o:S+— L, L — LS replaces a letter S by L and
the letter L by the word LS (Tab. 1) (cf. Luck et al., 1993). An
infinite F'S remains invariant under this substitution rule. The
Fibonacci numbers F,,; and F,, with F,=F, | + F,_»,
give the frequency of L and S, respectively, in the chain.
The limit of the sequence of their ratios

F
lim — = 7=1618...=(1+/5)/2=2cos (/5)
n—oo F,
as n approaches infinity is the golden mean 7. The number
7 is also the solution of the quadratic algebraic equation
?—71-1=0.

If we assign to L and S long and short intervals with
the ratio

L LS LSL LSLLS

STT s s T

Table 1. Generation of the Fibonacci sequence by the substitution
rule 0. The frequency of letters L and S is given by the respective
Fibonacci numbers F,;; and F,.

n  Words Number  Number Fo1lF,
of S, F, of L, Foy,
0 L 0 1 % =0
1 LS 1 1 =1
2 LSL 1 2 2 =2
3 LSLLS 2 3 =15
4 LSLLSLSL 3 5 5/3 = 1.666. ..
5 LSLLSLSLLSLLS 5 8 85=16
8 ... T=1.618...

then we get a quasilattice, which is invariant under scaling
with 7". Decoration of the vertices with atoms gives a sim-
ple model of a 1D quasiperiodic structure.

Embedding the FS in 2D space allows its description
as 1D cut of a periodic 2D hypercrystal (cf. Steurer, Hai-
bach, 1999b, and references therein) (Fig. 5). The lattice is
spanned by the basis vectors d;, d,. The slope of d; is
equal to —7. The vertices of the FS are generated where
the physical space, VH, cuts the atomic surfaces (red and
green line segments in Fig. 5). The size of the atomic sur-
face results from the projection of a 2D unit cell upon the
perpendicular space. The frequency of distances L and S is
proportional to the height of the blue and green shaded

Fig. 5. 2D description of the FS. The 2D unit cell (marked yellow) is
spanned by the vectors d; and d,. The 1D quasiperiodic FS results
from the cut of the atomic surfaces (red and green bars) of the 2D
hypercrystal structure with the physical space V. The arrow marks a
phason flip ... SL ... & ... LS ... Distances of type L are marked
by green, S by blue areas. By oblique projection of the atomic sur-
faces upon the physical space, the 1D PAS (red horizontal line seg-
ments) of the FS is obtained. The green line segments have distances
"L from the origin and correspond to pseudo-mirror planes of the
ID FS. The inclined blue line cuts the periodic %/; approximant ...
LSL ... out of the hypercrystal structure.
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Fig. 6. Penrose tiling (P7) with Ammann lines (black). The two unit
rhombs are shown (on top) with line segments. In the central part of
the thomb PT a pentagonal tiling is shown (white). There are three
different decorations of pentagons by rhombs and Ammann lines, re-
spectively. In the lower part of the figure, the flipping of an Ammann
line is shown on the example of a larger patch. The flips consist of
simpleton flips in the two types of hexagons occurring in the PT.

areas in the upper left part of Fig.5. Cutting the hyper-
crystal with the physical space inclined with a rational
slope (blue line in Fig. 5) gives the n/m-approximant (in
our example 2/;). Moving the physical space (horizontal
line) through the end points of the atomic surface (marked
by an arrow) leads to vertex jumps (phason flips) of the
type LS < SL. Projecting the hypercrystal along the in-
clined broad yellow strips gives the periodic average struc-
ture (PAS) of the FS (Steurer, Haibach, 1999a; Cervellino,
Steurer, 2002).

In the 2D description, the 1D FS is symmetric around
the origin of the 2D lattice. Vertices with distance 7L
from the origin come from atomic surfaces centered on
2D-lattice points with perpendicular-space components
7 "S. Consequently, with increasing n the FS around these
vertices gets closer and closer to mirror symmetry. This is
important for the structures produced by local twinning
(Fig. 2). In Fig. 6, a pentagonal tiling, produced by local
twinning, is superimposed on the rhombic Penrose tiling
(PT) decorated by Ammann lines. The Ammann lines, in-
finite straight lines, cut the rhombic unit tiles always in
the same way. Their distances follow a FS. Since the local
mirror planes at the edges of P, PSP, (P5P) 5(P5P), ...
have distances from the origin increasing with 7% for the
different generations of pentagon aggregates, they are also
pseudo-mirror planes of the FS mapping the Ammann
lines on themselves. The larger n, the closer are the pseu-
do-mirrors to real mirrors.

Net planes and ‘thin’ atomic layers (7ALs)

At each point of a lattice an infinite number of net planes
(lattice planes) intersect. Each net plane (hkl) is part of an
infinite set of parallel net planes {hk/} sampling all lattice
points. The density of lattice points on a net plane is in-
versely proportional to the distance djy between neighbor-
ing planes. In case of a crystal structure, each atom of a
unit cell and all translationally equivalent atoms form a
lattice. Except for the smallest unit cells, however, the
atoms on a net plane of such a lattice will not be in bond-
ing distance to each other. Consequently, atomic planes of
this type will not be of any crystal-chemical importance.
Structurally or morphologically important atomic
layers can be obtained if neighboring net planes, which
are occupied by atoms bonded to each other, are com-
bined to ‘thin’ atomic layers (TALs) (cf. Papadopolos
etal., 2004). These structurally important TALs corre-
spond to the net planes of morphological importance
(MI) parallel to the periodic bond chains (PBC) that form
the facets of crystals (Hartman, 1987). Since TALs are
densely occupied by atoms, they give rise to strong
Bragg reflections. These define Brillouin zones or, in
case of QCs, Jones zones and act as strongly scattering
planes for conduction electrons. TALs of low MI can be
favorite growth planes that disappear eventually. TALs can
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Fig. 7. Structure of decagonal Al—Co—Ni projected upon (11000)
(Cervellino, Steurer, 2002) (upper figure) and (01100) (lower left fig-
ure) (Steurer, Cervellino, 2001). The PAS is shown in the lower right
picture. The green lines mark the traces of the net planes inclined to
the tenfold direction [00100]. The red lines indicate (10100) planes in
the projections of the decagonal structure upon (11000) as well as on
(01100). One unit cell of 3-(Co,Ni);_,Al;,, is marked (black) in the
PAS. The (10012) plane of the PAS is parallel to the (010) plane of
the f-phase.
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also act as glide planes during mechanical deformation of
QCs and CMAs, in general.

Net planes in QCs are quasiperiodically spaced. The
Ammann lines of a Penrose tiling (PT), for instance, can be
seen as traces of net planes of a DQC (Fig. 6). In DQCs,
there also exist special sets of net planes, the so called ‘in-
clined net planes’, connecting both the periodic and quasi-
periodic directions (Steurer, Cervellino, 2001) (Fig. 7).
These net planes are lattice planes of the periodic average
structure of the DQC and form structurally important TALs.
For the growth of DQC, they can play an important role in
guiding the growth in the quasiperiodic direction. Some of
them have been observed as growth facets (Steurer, Cervel-
lino, 2001; Gille et al., 2005). In Fig. 7, it is shown that the
(10012) net plane of decagonal Al—Co—Ni corresponds to
the (011) net plane of the PAS and is parallel to the (010)
plane of the 3-phase, (Co,Ni);_Al;.,.

In the context of surface studies of QCs, there is an on-
going discussion on the terminating planes. It has been
shown that these should be TALs (Papadopolos et al., 2004).
There seems also to be a tendency to contract TALs in the
bulk structure. This has been indicated in the structure re-
finements of QCs by small displacements of atoms from
positions they should occupy in an ideal quasiperiodic struc-
ture in order to form denser TALs (see, for instance, Yama-
moto, Takakura, 2004; Cervellino, Haibach, Steurer, 2002).

Complex intermetallic phases are usually described
either in terms of a cluster packing or in terms of a layer
structure (see, for instance, Frank, Kasper, 1958 and 1959).
Both points of view can be useful. While the cluster descrip-
tion is focusing on local symmetry and packing considera-
tions, the TAL description focuses on long-range order.

The example Al—Co—Ni

Rapid solidification experiments have shown that both
CoAl; and NiAls (Grushko, Holland-Moritz, 1997; Pohla
and Ryder, 1997) form metastable decagonal phases. Elec-
tron diffraction patterns indicate a perfect four-layer struc-
ture for decagonal CoAls and a perfect two-layer structure
for decagonal NiAls. The diffuse scattering of stable deca-
gonal Al—Co—Ni as a function of the Co/Ni-ratio behaves
like a weighted average of the diffraction patterns of the
two boundary phases CoAls and NiAls (Katrych, Steurer,
2004). Annealing of decagonal NiAl; leads to the appear-
ance of diffuse interlayer lines indicating a twofold super-
structure along the tenfold axis, eventually orthorhombic
NiAl; is formed. This continuous transformation process
shows a close relationship between the decagonal phase
and the f-phase.

Approximants and clusters

Rational n/m-approximants are the set of structures that
can geometrically be derived by a perpendicular space
shear of a QC in the higher-dimensional description (see
Steurer, Haibach, 1999b, and references therein) (Fig. 5).
Mostly low-order rational (stable) approximants have been
discovered up to now (for a list of approximants in the
system Al—Co—Ni, see Steurer, 2004). Approximants in
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Fig. 8. The structure of 0P102-CosAl;3 (Grin et al., 1994) as typical
example of a Co-rich approximant and the pentagonal bipyramidal
cluster (Al ... blue, Co ... red). Depicted are (011) layers with x =0
and x ~ !/, as well as the structure projected along [001].

the wider sense of the word posses periodic crystal struc-
tures consisting of the same atomic clusters as QCs.

The approximants in the binary system Al—Co are
characterized by pentagonal structure motifs and two or
four layer periodicity. A typical example is orthorhombic
0P102-Co4Al 3 (Grin et al., 1994) (Fig. 8). Its four-layer
periodicity is a superstructure of the basic two-layer peri-
od mainly caused by Al ordering. Considering the frame-
work of Co atoms only, one finds exactly 4 A periodicity
for the subframework of planar pentagon-rhomb layers in
x=0, !/, The slightly puckered hexagon (H) layers in
X = 1/4, 3/4 show only minor deviations from 4 A periodi-
city. Thus the Co atoms form body-centered pentagonal
prismatic columns with 4 A periodicity in good approxi-
mation.
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Fig. 9. Structure of the building unit of 0P102-CosAl;; (Fig. 8), the
double-period pentagonal bipyramidal cluster (DPPBP). Layers A are
in x ~ !4, %4, layer B in x =0, layer C in x= !/, (Al ... blue, Co
... red).

The fundamental structural unit of all approximants in
the system Al—Co is the pentagonal bipyramid (PBP,
short P) or the double-period PBP of Co atoms filled with
Al atoms (Fig. 9). This type of cluster represents a rather
densely packed entity (Cockayne, Mihalkovic, 1999).
However, the packing in the approximant is not optimum,
strong deviations from regular shape of the PBPs are ob-
served. The pentagonal clusters deviate from ideal size
and shape even in DQCs.

The binary and pseudo-binary Al—Ni and Al—(Co,Ni)
approximants are vacancy ordered superstructures of the
cubic NiAl f-phase, which itself is related to the PAS of
decagonal Al—Co—Ni. Thus, the DQC may be considered
as a compromise between the competing driving forces to
form pentagonal structural units on the one side and va-
cancy ordered superstructures of the NiAl S-phase on the
other side. It has been shown that the (110) plane of
NiAl; is a periodic arrangement of the two unit rhombs
of the Penrose tiling (Pohla, Ryder, 1997). Besides these
geometrical relationships, it has also been shown that the
electronic structures of Al3Ni, and Al(Co,Ni) are similar
to that of the decagonal phase (Zurkirch ef al., 1998).

It is remarkable that the interatomic distances in the
approximants scatter considerably: Al—Al: 2.48-3.20,
AI-TM: 2.31-2.69, TM-TM: 2.50-3.15 A. The S-phase
(Co,Ni);_ Al 1, is with Al-Al: 2.87, AI-TM: 2.49, TM-TM:
2.50 A closest to the decagonal phase.

The binary Al—Co as well as the ternary Al—Co—Ni ap-
proximants consist of the same basic pentagonal bipyramidal
structure elements as the DQC in different arrangements. The
broad stability range of decagonal AlI—Co—Ni can be inter-
preted in terms of entropy gain by Co/Ni substitutional dis-
order and phasonic disorder of a part of the Al atoms.

The structural differences between the binary and tern-
ary phases in the system Al—Co—Ni as a function of
composition are a consequence of the following, partly
competing, factors:

1. Within the layers, Co is preferentially 5-coordinated

by Al

2. There is an optimum Co—Co distance of 4-5 A due
to a deep minimum in the Friedel oscillations of the
pair potential.

Al forms pentagon/rectangle/triangle tilings.

Co forms 7-times larger pentagon/rhomb tilings.

Co atoms of adjacent layers form dual hexagon til-
ings.

kW

ﬁ '(CoaNi)l—xAll—i—x

The S-phase, with a more or less disordered CsCl-structure

type, is not a simple Fibonacci-type rational approximant of

the DQC. It results from the oblique projection of its 5D

hypercrystal structure in the IMS description (Steurer,

2000). This means, it corresponds to an important PAS of

the DQC related to a special set of strong Bragg reflections.
The lattice parameters of the PAS of a DQC are
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For decagonal Al—Co—Ni with a,=2.456 A (Steurer
et al., 1993) we obtain

atS = 5a,/7° =2.899 A
dS = a,(3—-1)** =399 A,
i = a3 = 4.0807 A

We can compare these lattice parameters with distances
for B-CoAl: ajpy =2.862 A, a0 =4.047 A and a5y =
4.047 A. This is indeed a good agreement, which is also
shown in Fig. 7. As already pointed out by Dong et al.
(2001), the angle between the directions [111] and [111]
in the structure of B-CoAl is 70.52°, close to the 72° for
ideal 5-fold symmetry. The size ratio ra/rc, = 1.432/
1.253 = 1.143 (for Ni: 1.149) is far from the optimum
radii ratio r4/rp = 1.426 for a pentagonal arrangement of
hard spheres (pentagon edge length ss = 2r4) centered by
a smaller sphere (rp = ra(1 — cos 37/10)/(cos 377/10)).
The ratio of atomic distances in [-CoAl daial/
dco_co = 2.862/2.479 = 1.155, however, is pretty close to
it. This means, that the atomic distances (bond strengths)
in the first coordination sphere of TM atoms are the
same in both structural arrangements.

According to Cooper (1963), the maximum lattice
parameters for B-CoAl (a =2.8619(3) A, point density
PD =0.0853 A% and NiAl (a=2.8864(6) A, PD=
0.0832 A—3) are obtained for ~51% Al indicating a slight
solubility of Al at the TM sites. With further increasing Al
content to 53% and 52.5%, respectively, the lattice para-
meters decrease by 0.0015 A and 0.004 A, respectively
due to the increasing number of vacancies at the TM sites.
Thus, the increase in Al is mainly relative, it results just
from the decrease in TM content. According to Xiao and
Baker (1994), however, there is approximately the same
amount of Al atoms at TM sites as vacancies.

The Al atom is bigger than the TM atoms are. Putting
Al on a TM site generates a rather close contact to 8 other
Al atoms. This would be energetically less favorable than
the formation of a vacancy in case of Ni and only slightly
less favorable for Co (Bester et al., 1999).
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Fig. 10. Pentagonalization of the (110) layer of the CsCl-type struc-
ture of the ordered [B-phase (open circles). The shifted atoms are
marked blue, the typical tiling is drawn in white (compare with
Fig. 8, layer in x ~ 1/4).
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The point density, PD, of decagonal Al—Co—Ni is be-
tween 0.0661 A3 (Takakura ef al., 2001) and 0.0644 A3
(Cervellino, Steurer, 2002), i.e. more than 20% smaller than
that of S-CoAl. This is partly due to the larger atomic vo-
lume of Al that replaces 40% of the Co sites, partly due to
the less efficient packing of the DQC. For comparison, the
point density of pure cF4-Al amounts to 0.0602 A=3, of
cFA-Ni to 0.0914 A=3 and of 7P2-Co to 0.0903 A~3. The
average point density based on the concentration-weighted
atomic volumes results to 0.0722 A—3 for S-CoAl and to
0.0663 A3 for the decagonal phase Al sC0,45Nis.

The electron concentration of [-CoAl amounts to
e/a=15 electrons/A—3. The binary S-phases have the
maximum melting temperature for the 1:1 composition
(CoAl: at 1200 °C the stability range is from 27 to 53.5%
Al, Tax = 1640 °C vs. T,,° = 1495 °C; NiAl: at 1200 °C
the stability range is from 35 to 57.5% Al
Tax = 1638 °C vs. TNt = 1455 °C; Godecke, 1998). It is
remarkable, that the addition of a third component de-
creases the melting temperature so drastically. The liqui-
dus temperature is decreased to that of the primary crystal-
lization surface of the decagonal phase (Godecke, 1997).
In the binary system Al—Co, at 1180 °C, Co,Als is
formed peritectically from $-CoAl and melt, in the system
Al—Ni at 1133 °C, NipAl; forms. The lattice parameters
of -(Co,Ni)Al vary linearly with Co/Ni ratio (Kek, 1991).

The f-phase is dominated by strong Al—Co interactions.
Each Al atom is 8-coordinated by TM and vice versa. The
(110) layers show a pseudo-hexagonal close packing of
atoms. Each TM (Al) atom is surrounded by 4 Al (TM)
atoms in the distance a /3 / 2=0.866 and 2 TM (Al)
atoms in the distance a. According to Cooper (1963), the
maximum lattice parameter (i.e. for 51% Al) for Co—Al is
a = 2.8619(3) A. This is also the Al—Al distance while the
Al—Co distance results to 2.479 A. After pentagonalization
(Fig. 10), i.e. a distortion of the structure towards the quasi-
periodic structure for composition close to that of the DQC,
the coordination increases to 5 in the distance a v/3 / 2.

Geometrical growth model

The characteristic structural unit seen in electronmicro-
scopic images of DQCs is a kind of decorated Gummelt
decagon with ~20 A diameter (Gummelt, 1996). It has

been argued that a quasiperiodic covering based on such a
unit has a lower energy than any periodic structure based
on it (Jeong & Steinhard, 1994). The open questions are
how the overlapping rules are realized on the atomic level
and how QC growth takes place. In the following a sche-
matic geometrical model is given for the growth of deca-
gonal Al—Co—Ni to illustrate the principles leading to
quasiperiodic order.

For the fundamental unit we take a subcluster of the
~20 A cluster, the pentagonal bipyramid (PBP, short P) or
a double-period PBP consisting of a framework of TM
atoms with ~4.5 A distance (Fig.9). This distance corre-
sponds to the second minimum in Co—Co and Ni—Ni pair
potentials, respectively (Widom efal., 2000). The TM
atoms at the tops are regularly pentagonally coordinated by
Al atoms. The TM pentagon atoms are either bridged by
Al atoms forming a 10-ring or an irregular arrangement. Al
atoms are mainly responsible for the 8 A period as well as
for disorder. The driving forces for the formation of a
DQC are energy minimization by maximizing the packing
density of these energetically favorable basic units and en-
tropy maximization by forming structures best suitable for
phasonic excitations (phason flips). Additional entropy
contributions are provided by chemical disorder (Co/Ni),
subtitutional disorder (Al/[J) and displacive disorder
(puckering of atomic planes). Hume-Rothery-type electro-
nic stabilization keeps DQC growth along regular net
planes (Ammann type) and inclined net planes (PAS type).

It has been shown that placing atoms at sites where
four or five lattice lines with relative 5-fold orientations
meet (lilac star of five lines in the upper picture of Fig. 7)
and at fixed distances from their neighbors generates qua-
silattices with very little disorder (Olami, 1991). If we re-
place ‘lattice lines’ by net planes and ‘atoms’ by ‘atomic
clusters’ such as PBPs then we arrive at our model.

Rapid nucleation is typical for QCs. Even rapidly
quenched QCs (>10°Ks™!) show correlation lengths of
several hundred A. The first step of quasiperiodic growth
must therefore be governed by local parameters, because
there is not much time for diffusion and equilibration. In
the following, we distinguish two basic mechanisms, pen-
tagrammal growth and [-phase-templated growth, respec-
tively. Pentagrammal growth may be favorable in the pri-
mary crystallization regime of the DQC where no f-phase
exists. If S-phase is already present then heterogeneous
nucleation of the DQC on the f-phase and [-phase-tem-
plated growth can take place.

Decagonal Al—Co—Ni forms peritectically at 1175 °C
from pB-phase and liquid Al. In the isothermal section at
1170 °C, decagonal Al;;5C0,45Nij is in equilibrium with 3-
AlssCossNijg or, taking into account the structural vacancies,
Als;(Co,Ni)gp[1; (Godecke et al., 1998). At 1100 °C, the
Ni content of the decagonal phase reaches up to 12.5 at.%
and at 900 °C a maximum of 22 at% for 70% Al content.

At certain compositions or for melts that are under-
cooled by more than 60 K (Liu ef al., 2002), the DQC
crystallizes directly from the melt. Consequently, we will
discuss in the following two scenarios. The first refers to
primary crystallization of the DQC from the melt (penta-
grammal growth), the second to peritectic formation from
pB-phase and liquid Al (8-phase-templated growth).
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Model of pentagrammal DQC growth

Our model assumption is that the primary crystallization
of the DQC is governed by the following three factors
acting on different scales:

1. primary factor (local): spontaneous formation of
pentagonal bipyramidal basic clusters (partially al-
ready in the melt). Formation of P5P clusters:
P+ 5P — P5P (Fig. 2).

2. secondary factors (local): growth by addition of
atoms and basic clusters in compliance with local
fivefold symmetry and the constraint of extended
TAL formation. Pentagonal local twinning preserves
pentagrammal symmetry. Formation of P5P stellated
by hexagons, H: P5P + 5P2P — (P5P) H5 — re-
laxation. Completion of peripheral P2P clusters:
P2P +3P — P5P. Formation of superclusters
(Gummelt cluster) by rearrangement and relaxation
of atoms (Fig. 2).

3. tertiary factors (global): Energy minimization by
Fermi-surface nesting. To deepen the pseudo-gap at
the Fermi edge, the TALs related to the low-index
reflections forming the pseudo-Brillouin (Jones)
zone have to be compacted, i.e. the intensity of the
respective Bragg reflections maximized. This means,
the TALs have to be extended, ordered and as flat as
possible. Local 5-fold symmetry extends to global
5-fold symmetry via TALs and their scaling symme-
try. Further growth is guided by regular TALs (along
Ammann lines) as well as inclined TALs (net planes
of the PAS). The latter ones form a strong constraint
for quasiperiodic growth since it couples the peri-
odic with the quasiperiodic direction.

Model of B-phase-templated DQC growth

The structure of the S-phase shows long-range registry
with the vertices of an infinite pentagramma (Fig. 11). The
farther away from the center of the pentagramma, the clo-
ser are the vertices to sites of the S-phase structure. This is
a consequence of the scaling properties of the pentagram-
ma in the nD description. Scaling in physical space by a
factor T means multiplying its position vector by a factor 7.
In perpendicular space this is related to moving the perpen-
dicular space component of its nD position vector by a
factor 1/t. Thus, the vertex of the pentagramma and the
lattice point of the PAS get closer and closer to each other
by each scaling by a factor 7. Consequently, nucleation
starting at points far apart from each other on the $-phase
surface is always in registry with the decagonal phase.

Starting from the B-phase, first vacancies order along
the [111] directions (z-phase formation such as NiAls,
Chattopadhyay et al., 1987). Then Al diffuses into the va-
cancy-rich structure and preferentially coordinates Co pen-
tagonally. Excess Co/Ni/[] moves to the surface. During
this process the (-phase structure distorts locally penta-
gonally (‘pentagonalization’) (Fig. 10). Pentagonal bipyra-
mids are formed, interstitial atoms are squeezed out and
structural half-vacancies (flip positions) generated.

The pentagrammal symmetry is maintained by local
polysynthetic twinning of the PBPs. In each pentagramma

Fig. 11. Pseudo-pentagrammal symmetry of the (110) layer of the
CsCl-type structure.

vertex four net planes meet, a prerequisite of quasiperiodic
growth (Olami, 1991). The centers of the pentagons or
centering atoms of pentagonal bipyramids form a HBS til-
ing (dual to the pentagon tiling). The TM atoms form the
pentagrammal network, Al atoms just act as rather flexible
matrix mediating TM-TM interactions (strong sp(Al)-
d(TM) interaction).

Further growth takes place in a similar way as de-
scribed in the other scenario.

Conclusions

We have shown two different scenarios for the growth of
the decagonal phase in the system Al—Co—Ni. Based on
all the previous research done so far in the system
Al—Co—Ni (cf. Steurer, 2004) we assume that the cluster
picture helps in understanding the formation of DQCs. We
conclude, however, that the crystal-chemically relevant
cluster is much smaller than the usually employed ~20 A
Gummelt cluster. Moreover, the Gummelt cluster is the
result of local twinning of PBPs. Consequently, overlap-
ping rules are weak and quasiperiodicity is mainly forced
by TALs, in particular inclined net planes. In both growth
scenarios, the role of TALs is crucial for the evolution of
long-range-order in the DQOC.

Our model of polysynthetic local twinning of cluster
with n-fold symmetry gives a simple geometrical interpre-
tation why only derivative structures of the Penrose tiling
(PT) have been observed experimentally so far and QCs
with symmetries such as 7-fold are less likely to be
formed.

Future studies will try to prove the ideas presented
here, in particular the pentagonalization of the B-phase in
the very Al-rich regime, experimentally as well as by
quantum-mechanical calculations.
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