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Summary: The optimal risk allocation problem or equivalently the problem of risk sharing is the
problem to allocate a risk in an optimal wayrndraders endowed with risk measuges . . ., on.

This problem has a long history in mathematical economics and insurance. In the first part of
the paper we review some mathematical tools and discuss their applications to various problems
on risk measures related to the allocation problem like to monotonicity properties of optimal
allocations, to optimal investment problems @ah appropriate definitiorf the conditional value

at risk. We then consider the risk allocation problem for convex risk meagyrds general

the optimal risk alleation problem is well defined onlynder an equilibum condition. This
condition can be characterized by the existence of a common scenario measure. We formulate
a meaningful modification of the optimal risk allocation problem also for markets without assuming
the equilibrium conditia and characterize optimal solutionsiélbasic idea is to restrict the class

of admissible allocations in a proper way.

1 Introduction

The optimal risk allocation problem or equigatly the problem of optimal risk sharing
has a long history in mathematical economics and insurance and is of considerable
practical and theoretical interest. In early papers the construction of linear reinsurance
treaties has been based on minimizing the individual and the aggregate variance of risk
(for references see Seal (1969)). BortB§0a, 1960b, 1962) showdtht based on utility
functions Pareto optimal risk exchangeen be characterized and in many cases lead
to familiar linear quota-sharing of the tbgaooled losses or to stop loss contracts and
to mixtures of both. Solutions are however typically not uniquely determined which
may lead to substantial fixed side payments. In several papers authors have added game
theoretic considerations or additional contseftike the concept of fairness) to arrive at
a specific element in the set of Pareto optimal rules (see Borch (1960b), Lemaire (1977),
Buhlmann and Jewell (1979)).

Since risk pools redistribute only actual losses and possibly the associated premiums
but not the individual wealth of the companyistnatural to include side constraints in
the exchange protocol of the foriy > A; for the componenty; of the allocation and
some constant or random boun#is to limit negative charges or payouts of company
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Similarly also upper constraints of the fopn < A; + Bj have been introduced to protect

the liquidity of the individual companies. The importance of side constraints has been
suggested by Borch (1968) and has formally been introduced and applied in Gerber (1978,
1979).

Several authors have extended the framework as e.g. to include more general utilities,
to consider incomplete preferences, or to include the presence of background risk. The
allocation problem has also been considered in the context of financial risks. For some
of the large number of references see Leland (1980), Chavallier &iili1994),
and Barrieu and El Karoui (2002a, 2002b, 2003, 2004, 2005), Dana and Scarsini (2005),
Chateauneuf, Dana, and Tallon (2000), Gerber (1979), Landsberger and Meilijson (1994),
Denault (2001), Dana and Meilijson (2003), Heath and Ku (2004), Carlier and Dana
(2003), Burgert and &schendorf (2005), Jouini, Schachermayer, and Touzi (2005), Dana
(2005) and references therein. Also more general types of risk measures (distortion type,
coherent, convex, comonotone risk measures) have been considered for the allocation
problem. For the background literature on riskasures and their applications to finance
and insurance we refer to Kaas, Goovaerts, Dhaene, and Denuit (2001), Delbaen (2002),
and llimer and Schied (2004).

In our paper which is based on these developments we consider the following formula-
tion of the optimal risk allocation problem. L&®, A, P) be a nonatomic probability space
and consider a market whithtraders endowed with convex risk measuggs. . ., on.

The problem is to characterioptimal allocations of a risik € L*°(P) to then traders,
i.e. to determine solutions of the problem

n
> 0i(Xi) =inf! (1.1)
i=1

under all allocations oK to the traders, i.e. under all decompositiofis= 3 ' ; X;,

Xi € L*®(P). (The same problem can also be considerdditP) forany 1< p < o0.)
Solutions of the risk allocation problem are not unique but in fact are given under an
equilibrium condition by the set of all Paretotopal allocations, as follows from a general
separation argument and the translation invariance oittigee Gerber (1979, pp. 88—
96). Thus the optimal allocation problem can be interpreted as problem to minimize
the total risk of a risk sharing contract but also as a basic tool to determine Pareto
optimal allocations. The value of the optimal allocation problem is given by the infimal
convolutiong = g1 A - - - A gn defined by

n n
2(X) = inf { D ei(X): Xi e L®(P), ) X = X} (1.2)
i=1 i=1
for X € L*°(P) (or more generall)X € LP(P), 1 < p < 00).

In the first part of the paper we show that the general formulation of the optimal
risk allocation problem in (1.1) (1.2) makenly sense under a Pareto equilibrium con-
dition (E). In vague form (E) can be stated as follows. A market is in equilibrium if in
a balance of supply and demand it is not pblesio lower the risk of some traders without
increasing that of some otheaders. This equilibriumandition (E) has been character-
ized for coherent risk measures, . .., on in Heath and Ku (2004) and in Burgert and
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Rischendorf (2005) in terms of the scenario measures qfith&e give an extension of
this characterization to conveisk measures and establish thas a convex risk measure
if and only if the Pareto equilibrium condition (E) holds true.

The main new part of this paper is concerned with the allocation problem in the
case that the equilibrium condition does not hold. In this case the above formulation
of the optimal allocation problem leads to inconsistencies. We introduce a new class of
restrictions on the set of allocations which we call admissible allocations and consider
the problem of optimal allocations with respect to this restricted class. In comparison
to the constraints as dealt with in Gerber (1978) we postulate constraints on the com-
pensation structure of the allocatiofy motivated as above to limit negative charges
or payouts and to protect the liquidity. The bounds depend on the absolute size of the
total risk X. From a mathematical point of view our side constraints are connected
with a similar idea in portfolio theory, where one considers (lower bounded) admis-
sible strategies in order to exclude strategies which allow arbitrage. As consequence we
obtain a new convex risk measure — called thavex admissible infimal convolution
risk measure — which describes the optimal total admissible r@{‘zl 0i (X)) in the
market.

The risk sharing problem is a problem where the traders minimize the total risk by
some kind of exchange contracts. This can be considered as an optimistic attitude towards
risk. It aims to construct an optimal admissible exchange which is typical for insurance
and reinsurance contracts. In the final part of our paper we consider the opposite view
from the perspective of a regulatory agent in a financial market who takes care that the
individual agents (traders) have enough capital reserves to cover their part of the risk
X in any allocationX = Zinzl X to then traders. The regulatory agent considers any
possible (admissible) allocation and determines the total risk in the worst case which is
the necessary total capital reserve. Therefore, we describe this situation as a situation
with a cautious risk attitude. Again as a result we obtain a new coherent risk measure
describing the worst case total admissible risk.

In Section 2 of this paper we review some mathematical tools and in particular discuss
the relevance of the generalized distribution transform as well as the Hoeffdewdefr
bounds and the comonotone improvement result for various risk measure problems. These
are in particular useful tools for establishing natural monotonicity properties of optimal
allocations. They also simplify arguments for optimal investment problems and lead in
a natural way to &orrect definition of the conditional value at risk measure. In Section 3
we then consider the optimal allocation problem which corresponds to an optimistic risk
attitude. In Section 4 we discuss the alltiea problem under a cautious risk attitude,

i.e. under the view of a regulatory agent. In both cases as a result we obtain convex risk
measures which are relevant and correspond to the risk attitude.

2 Generalized distribution transform, Hoeffding—Freé-
chet bounds, and the comonotone improvement result

This section deals with some mathematitmadls which are useful for deriving mono-
tonicity properties of optimal allocations but also are useful for various further problems
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on risk measures. We assume throughoutghjser that the underlying probability space
(22, A, P) is nonatomic.
For any real random variabb¢ on 2 let for x € R andA € [0, 1]

F(x,A) := P(X < X) + AP(X = x) (2.2)

be the modified distribution function. For a random varia¥laniformly distributed on
(0,1) (V ~U(0, 1)) and independent of (which we assume to exist g, A, P)) we
define thg(generalized) distribution transform of X by

U:=F(X, V). (2.2)
Then it is not difficult to check that
U~UQ,1 (2.3)

and

X = Fy'(U) [P]. (2.4)

The generalized distribution transform in (2.2) can be found in Ferguson (1967,
Lemmal, p. 216). An extension of this transform to multivariate random vectors is in
Ruschendorf (1981). (2.2), (2.4) give an explicit construction for a result of Ryff (1970),
which states the existence of solde~ U(0, 1) with (2.4). We will give some examples
of the usefulness of this distribution transform.

A second tool of considerable importance are the Hoeffdingeltet bounds (holding
true also without assumin@?, A, P) to be nonatomic): For an¥(, Y such thatX - Y €
L1(P) and anyU ~ U(0, 1) holds

Hoeffding—Fréchet bounds
EF (1 - U)F HU) < EXY < EFHUFA ). (2.5)

Remark 2.1 Inequality (2.5) is due to Hoeffding (1940). The related bounds for the joint
distribution functions are given independently at the same time égtiet (1940). Using

the above mentioned result of Ryff (1970) the HoeffdingdRretbounds (2.5) also follow

from rearrangement inequalities for real functiong@ri] due to Hardy, Littlewood, and

Polya (1952). The literature on rearrangemiaesgualities in function spaces making this
connection to random variables however came up only in the 70’s and, therefore, it seems
appropriate to assign this fundantal inequality to Hoeffding and Echet.

A third important tool in connection with the allocation problem is the following

comonotoneimprovement result of Landsberger and Meilijson (1994): Lé&t, ..., Xn €
LY(P) andX := Y ', Xi, then there exisK <., Xi, such that

n
X=X and Xj.....X; arecomonotone (2.6)
i—1
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Here <., denotes the convex stochastic ordering @Kd, ..., X},) are called co-
monotone if for alli # j

(X (w) — X (w") (XT(w) - X}‘(u/)) >0[P®P], 2.7

i.e. all components are similarly ordered. ComonotonicityXjf) is known to be equiv-
alent to the existence of nondecreasing functiGnsuch thatX®* = fij(X*), 1 <i <n,
for X* =31, X =Y, X =X

Arisk measure is called consistent w.t,, if it iSs monotone w.r.t. the partial convex
order<,. Consistent risk measures are law invariant. Consistency of a risk measure
w.r.t. convex ordering is close to convexity @f

Proposition 2.2 Let ¢ bealaw invariant risk measure on L°°(P).

a) If o isaconvexrisk measurethen o is <., -consistent.

b) If o isconvex on any class of comonotonerisks and <, -consistent, then ¢ isa convex
risk measure.

Proof: For a) see Blimer and Schied (2004), Burgert and$thendorf (2004), and Dana
(2005).
b) For anyX,Y € L®(P) anda € (0,1) holdsaX 4+ (1 — 0)Y <¢ aFyx*(U)
+ (11— F;l(U). Therefore, using convexity @f on sets of comonotone risks and
<cx-Consistency op we obtaing(aX + (1 — @)Y) < ap(X) + (1 — a)o(Y). O

In casep is comonotone additive and coherent part b) follows from Wang, Young, and
Panjer (1997). As consequence of the comonotone improvement result we thus obtain

Proposition 2.3 (Monotonicity result) Let g; be convex, law invariant risk measures
and let (Xj) be an allocation of X in L>(P), then there exists an allocation (X}")
of X with ¢i(X{) < 0i(Xj),1 <i < n,and X¥ = fj(X) for some monotonically
nondecreasing functions f;.

It is obvious that this result also holds true for risk measures®iP), 1 < p < oco.

The monotone improvement result implies the existence of optimal allocaigns
such thatX¥ = fj(X), fi nondecreasing (see Carlier and Dana (2003), Jouini, Schacher-
mayer, and Touzi (2005, Theorem 6)) provided the infimum over all allocations is finite,
oi are convex law invariant and € L>°(P).

The same monotone structure of optimal solutions remains true if we add an individual
rationality constraint to the problem, i.e.: L¥t= >"{', X; be an allocation oX and
consider the problem

YY) = min!
(AR) ¥V - X (2.8)
Yi Sex Xi
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Again a solution(X}") exists such thak = fij(X), fi nondecreasing. The additional
conditionY; <., Xj is motivated by the argument, that tradevill only accept the new
risk Y; in exchange to his risK; if Y; is preferable toX; for traderi, i.e.,Y; has a smaller
risk thanX;.

We discuss briefly some further interesting applications of these tools relevant in risk
theory.

I. Copulas

Let X = (X4, ..., Xq) be ad-dimensional random vector with marginal d Fs= Fy;,

1 < i < d. Then applying the generalized distribution transform to the components
Ui := F(Xi, V) we obtain a random vector

U=(U1,...,Uq (2.9)
with uniform marginals. Further,
Xi = F1(Ui) [P] (2.10)
and the d.fFx of X is given by
Fx(X) = Fu(F1(x1), ..., Fa(Xa)). (2.11)

ThusU is a copula ofX.

The generalized distribution transform allows a simple construction of the copula
which is an important tool for the analysis of the dependence structure of risk vectors.
Thus Sklar’s theorem is a direct consequeniche generalized distribution transform.
For the application of the distributional transform to obtain bounds for risk functionals of
portfolio vectors see the survey papdrdehendorf (2005).

Il. Conditional value at risk
Let Xy = go(X) = inf{x : P(X < X) > a} denote the lowes-quantile of the riskX. It
is well known that theconditional tail expectation

TCEL(X) = —E(X | X < X(@) (2.12)

in general does not define a coherent riskasure except when restricted to continuous
distributions. From the point of view of the generalized distributional transform it is
natural to define theonditional value at risk by

CVRy(X) := —E(X | U < ), (2.13)

whereU = F(X, V) ~ U(0, 1) is the distribution transform oX. With this definition we
obtain

1
CVR,(X) = —=EX1(U < a)
(07

1
—&[E(xux < X@) + X@1(X = X, U < a))]
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1
——|:EX1(X < X(a))
o
4 x(a)1<X = X, P(X < X@) + VP(X = X)) < a>:|

1 a — P(X < X))
a|: ( < (a)) + () ( (0‘)) ( - P(X = X(a)) )

1
—&[EX1(X < X)) + X(@ (@ = P(X < X(@))]

ES.(X). (2.14)

The modified definition of conditional value askiis identical to the expected shortfall
ES.(X); it therefore is also identical to the average value at risk AM@8, and thus is
a coherent risk measure. As a result thérdigon of conditional value at risk in (2.13)
appears to be appropriate and leads to a coherent risk measure.

I1l. Optimal investment problem
The following optimal investment problem is a classical problem in portfolio theory (see
Dana (2005) with many references on this problem).

For X' e L), X € L>®(Q) consider

EX'C = min!
€) C < X
C e L>®(P).
ConsideringX’ as a price density the problem is to find under all investm@nthich are

more attractive thaiX one with the lowest price. The soluti@iX, X’) of (£) is called
reservation price oK (see Jouini and Kallal (2000)). Its value is given by

1
e(X, X') = / Fe (1 — DF (Dt (2.15)
0
(see also Dana (2005, Theorem 1)).
The proof of the following lemma, which is crucial for this problem, is simplified by

the general distribution transform.

Lemma 2.4 For any r.v.s X, Y holds

1
inf{EXY’; Y ~ Y} = e(X,Y) =/ FelF i — vt (2.16)
0

Proof: By the Hoeffding—Fechet inequality the r.h.s of (2.16) is a lower bound. Con-
versely, letv ~ U(0, 1) beindependent of and defindJ := Fx (X, V).ThenF;l(U) =
X [P] and the r.h.s is attained by the admissible pairF; (U), F;1(1 - U)) =
(X, Fgt@ —U)). O
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Now (2.15) follows from the monotonicity a(-, X) with respect to<,, which is
a well known result in stochastic ordering. Note that the optimal invest@erg given
by F;l(l —U) = g(X, V). C* is a decreasing function ok andV. An equivalent

investment i<C = E(C* | X) = fol g(X, v)dv =: (X) which is decreasing iix.

IV. Minimal liability risk problem
The following minimal lialkility risk problem of Schied (2004) is similar to the optimal
investment problem in 111

o(—X) =inf!

L
) EpX > v,

(2.17)

whereg is alaw invariant risk measure apds a pricing density 6< ¢, E,¢ = 1. Theaim
is to minimize the risk of the liability- X under allX with price of— X smaller than-v.
There exists a solutiok™* of (L) as shown in Schied (2004)dfis lower semicontinuous.

Proposition 2.5 (Monotone solutions of the liability problem) a) There exists a solu-
tion X* of the minimal liability problem (L) such that (X*, ¢) are comonotone.

b) If o isaconvex, law invariant risk measure, then there exists a solution X* of theform
X* = g(¢) with g nondecreasing.

Proof:

a) LetV ~ U(0, 1) be independent oX, ¢ and letU, := F,(p, V) ~ U(0, 1) be the
generalized distributional transform axd := Fil(U(p), whereX is a solution of
(2.17). ThenX ~ X* and thuso(—X) = o(—X*). Further, using=, *(U,) = ¢[P],
we obtain from the Hoeffding—Echetinequality < E(p’)v( < EFw_l(Utp) F>~<_1(U(p) =
E@pX*. Thus alsoX* is a solution andX* = h(g, V), whereh is monotonically
nondecreasing ip, V. ThusX*, ¢ are comonotone.

b) If o is a convex law invariant risk measure, and if we define
Xi=EX 10 = [hp.0dP' o) = [higod=g@.g1  (@18)

then we obtainEgX = EgX* > v ando(—X) < o(—X*) = o(—X), sincep is
<cx-consistent. Thus we obtain a solution which is a monotonically nondecreasing
function ofg. O

3 Optimal allocation of risks with optimistic risk attitude

Inthis and in the following section we assume thadre convex risk measures bf° (P),
i.e. monotone, translation invariant convex functionalsL6f(P). The acceptance set
A = A, of a convex risk measugeis given by the convex set

A, = {X € L¥(P); o(X) < 0}. (3.1)
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Convex risk measures are charaizted by a representation of the form

o(X)= sup Eq(—X—a(Q)), VXelL*WP), (3.2)
QebaP)

where b@P) is the set of finitely additiveP-continuous measures and: ba(P) —
(—o0, oo] is a convex penalty function, which can be chosen as Fenchel-Legendre con-
jugate ofp

a(Q) = sup (Eq(—X)— (X)) (3.3)
XeL>®(P)

(see Blimer and Schied (2004)). Further the sup can be restricted to the/elh&B) of
probability measures absolutely continuous wR.tf the acceptance set

Ao = {X € L®(P); o(X) < 0} is o(L®(P), LY(P)) closed (3.4)

or equivalently if o is Fatou continuous (i.6Xn| < K, Vn and Xu £ x implies
o(X) < limo(Xn)) resp., ifo is lower semicontinuous w.r&(L>(P), L1(P)).

We willintroduce a meaningful general formation of the optimal allocation problem
and derive some properties of optimal allocations. It was observed in the case of coherent
risk measureg; in Heath and Ku (2004) and Burgert andisthendorf (2005) that the
optimal allocation problem as in (2.1) isel defined only underrmadditional Pareto
equilibrium condition. This observation extends to the case of convex risk meagures
with penalty functions; as in (3.3).

Definition 3.1 (Pareto equilibrium) A market model with risk o1, ..., on iSin Pareto
equilibrium, if

n
(E) Xi € L(P)with » " Xj = 0andei(Xi) <0i(0), 1<i<n,
i=1
implies i (Xi) = 0i(0), 1<i=<n.

In a balance of supply and demand the kesiis in Pareto equilibrium not possible
to lower the risk of some traders without increasing that of others. Vaguely one could say
that there is10 arbitrage situation concerning risk. There is a seemingly stronger version
of the equilibrium condition:

(SE) Strong equilibrium

n n n
If Xi € L®(P)with > X; =0, then Y "0i(Xi) = Y _0i(0).
i=1 i=1 i=1

Itis immediate to see that (SE» (E), but in fact both conditions are equivalent.
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Proposition 3.2 The equilibria conditions (E) and (SE)are equivalent.

Proof: Assume that for som&; € L°°(P) with Y ' ; X; = 0 holds} i, (0i (Xi) —
0i(0)) =: ¢ < 0. Then withg; := ¢i(Xi) — ¢i(0) and Z; := X; + ¢ — £ holds:
>,z =0and

c c .
Qi(Zi)=Qi(Xi)—Ci+ﬁ=Qi(0)+ﬁ<Qi(0), l<i<n.
Thus we obtain a contradiction to (E). O

Thus under the Pareto equilibrium condition (E) the sum of all risks in a balance
situation is greater than the cumulative risk of zero. The infimal convol@ieng; A
.-+ A on as defined in (1.2) describes the optimal allocation of igskself is, as a func-
tional of X, a risk measure.

If 0 is a convex risk measure, then by Theorem 3.6 in Barrieu and El Karoui (2003)
the penalty functiom; of o is given by

n
a@:Zai.
i=1

A characterization of Pareto equilibriumgssen in the following proposition in terms of
the penalty functiona;.

Proposition 3.3 Let P; := {Q € ba(P) : ¢; (Q) < oo} denote the ‘scenario sets' of j,
1 <i < n. Then the following conditions are equivalent.

1) ¢ isaconvexrisk measure.
2) 0(0) > —oo.

3) 2(0) = Y (L1 i (0).

4) (SE)holds.

5) NiL, P # 0.

Proof: The first equivalence is obvious. The equivalence of 1) and 3) follows from the
fact that the penalty functiom; of o is given by

The equivalence of 3) and 4) follows from the definitiorpasince

n n n
3(0) = inf { Y ai(Xi: Y Xi = 0} =Y a0
i=1 i=1 i=1
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is equivalent to

n n n
Y Xi=0=) 0i(X) =) 00
i=1 i=1 i=1

i.e. to condition (SE).
The equivalence of 2) and 5) is obvious. O

Remark 3.4 In the case of coherent risk measupgsy; (Q) € {0, oo} for all i and the
setsP; = {Q € ba(P), ¢ (Q) = 0} defined in Proposition 3.3 are identical with the sets
of scenario measures@f. Thus Proposition 3.3 implies the characterization of Heath and
Ku (2004) resp. Burgert andiRchendorf (2005) in this case. The equilibrium condition
(E) is equivalent to the conditiof)[_; P # 9, i.e., there exists a scenario meas@e
which is shared by all traders in the market.

In the case that the Pareto equilibrizandition does not hold we introduce the
following formulation of the optimal allocation problem which makes sense also without
assuming condition (E).

Define a decompositioX = Zinzl X; to beadmissibleif X(w) > 0 implies that
0 < Xj(w) andX(w) < 0 implies thatX;j (w) < 0. Let A(X) denote the set of admissible
decompositiongX;) of X. We define thadmissible infimal convolutiong, as the value
of the allocation problem restricted to admissible allocations

n
0+(X) 1= inf { Yo (X e A<X>}. (35)

i=1
Obviously, we have

n
2(X) < min(ai(X) — i (0) + ) 0i(0).
i=1

The restriction to admissible decompositions of risks excludes, similarly as the re-
striction to admissible strategies in portfolio theory, that effects like doubling strategies
paradoxes may occur in risk allocation.

In the following theorem we derive a representatiop.dah terms of the representation
scenarios; := {Q € baP); «j(Q) < oo} of gj. ForP, € P; define byPy A --- A Py,
the lattice infimum of B) in the lattice b&P) and byP; v - - - v P, the lattice supremum
of (P) in ba(P) (see Rao and Rao (1983, Theorem 2.2.1)y, lire probability measures
with densitiesf; w.r.t. u thenPy A --- A P, resp.Py Vv - - - v Py have densities mirf; }
resp. maxfi} w.r.t. u.

Theorem 3.5 Let ¢ be convex risk measures with penalty functions o;j. The admissible
infimal convolution g, is given by

Q*(X):Sup{/Xd/\Pj —/X+d\/ Pj —ZO[j(Pj); PiePj,1<] gn}.
J J j
(3.6)
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Proof: The proofis similar to that for coherent risk measures in Burgert arstRendorf
(2005). The class of admissible decompositions has an alternative description like in
multiple decision problems:

n
AX) = {(wixx O<pi <L) o =1}; 3.7)
i=1

thus we consider decompositions of the fagmnX).
ForP € Pj,1<i <nandY := —X € L*®(P) holds

n n
a%w%W%=m%§:waH;0§w§:w=1}
i=1 i=1

has a solutioriy;") and if Y(w) > 0, then{g] > 0} C (PR = /\';=l Pj}andifY(w) < 0,
then{yi > 0} c {R = \/]_; Pj}. Thus

n n
ap,,.. p,(Y) = / Yd /\ P; +/ Yd \/ P;
Y>0 i Y<0 i

j=1 j=1
=/nuAm—/xuva
- /x,d/\P,— —/X+d\/Pj.

Therefore, we obtain

0:(X) = ggf)Zgi (piX) = inf )" sup (/(—Wix)dH —ai(H))
Y

(@i) . Ren

n
- S ([ ean )]

= —supz inf </<piXdP| +0li(P|)>-

(o) T RER

We now apply theninimax theorem for games(A, B, f) of concave—convex type, (see
Mdller (1971)). Letf : Ax B — R, A, B # ¢ and assume that

1) Vbs, by € B, @ € [0, 1] there exists & € B such that for ala € A holds
f(a,b) < (1 — o) f(a, by) + af(a, by).
2) Va, a2 € A, a € [0, 1] there exists am € A such that for alb € B holds

f(a,b) > (1 — ) f(a1,b) + af(ag, b).
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If f < oo and if for some topologyr on A holds A is t-compact andvb € B,
f(-,b) : A — R is upper semicontinuous, then

inf sup f(a, b) = supinf f(a, b). (3.8)
beBacA acAbeB

B=7P1x---xPhandf((¢i), (P)) = Z?zl(f i XdP, +«j (P)). By linearity of f and
convexity of P; and A the conditions of the minimax theorem are fulfilled and we obtain
from the first part of the proof

We chooseA = {(¢i); 0 < ¢i, Y. ¢ = 1}, which is compact in weaktopology,

0+(X) = — inf SUPZ(/wiXdPl +ai(P|)>

PePi (i)
_FE.QL. (/x+d\/P. —/de/\P. +Zai(F’.)>
SUP(fX—d/\Pl —/X+d\/P| —Zoei(P.)). O

P eP;

As consequence of Theorem 3.5 we obtain a further characterization of the Pareto
equilibrium condition (E) andinder condition (E) the identity of and .. Therefore,
the representation of (3.6) holds true founder condition (E).

Proposition 3.6 Let p; be convex risk measures and let o, denote the admissible infimal
convolution, then it holds:

04 Isaconvex risk measure < 04(1) = 0,(0) — 1
< The equilibrium condition (E) holds.

Under (E) we have g, = 0.

Proof: The first equivalence is obvious since the conditiQil) = ¢.(0) — 1 implies
translation invariance of,. By Theorem 3.5

0+(1)

SUP{ -1V Pjl —Zoej(Pj); P; er}
i .

J

—inf {l\/ Pj —l—ZOtj(Pj); Pj € Pj}.
i -

J

Thusg.(1) = 04(0) — 1 if and only if there exists a common scenario measpre
i, P which by Proposition 3.3 is equivaieto the equilibrium condition (E). O

Remark 3.7 The conditione,(1) = 0.(0) — 1 has the following interpretation. The
traders in the market try to allocate their risk in the best possible way which leads to a risk
0+(1) < 04(0) — 1 for any risk measurgg. On the other hand from a regulatory point of
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view the risk measures should be chosen by the traders in a most cautious way in order
not to underestimate the whole risk. This gatheoretic consideration suggests that in
order to obtain that the optimal admissible total risk is reasonable i.e. in our context is
a convex risk measure one might expect that the conditigf) = 0.(0) — 1 should

hold. This idea is confirmed by Proposition 3.6.

0« is a convex monotone risk functional — in particua(0) = Z{‘Zl 0i (0) — butp,
is not translation invariant in general. From the definitioppfve obtain

n n
0x(1) = inf { ZQi(Xi); 0< X, in = 1} (3.9)
i—1 i—1

n
< oD+ 0i(0) =0.(0) - L
i=2
As we have seen the modified allocation problem givenphyleads to a sense-
ful version of the allocation problem also when (E) does not hold. We finally get by
a modification ofp, a convex risk measui@, which we call convex admissible infimal
convolution.

Definition 3.8 (Convex admissible infimal convolution)We define the convex admissi-
ble infimal convolution risk measure o, by
0:(X) :=inflmeR; X+ me A} (3.10)
= infflme R; o.(X+m) <0}
where A = A,, = {X; 0«(X) < 0}.

From the definitiorp, is a convex risk measure withz, > A,, = A and
0+ < 0x- (3.11)
Theorem 3.9 Let o1, .. ., on be convex risk measures, then:
1) 0. isthelargest convex risk measure ¢ with ¢ < .
2) Under condition (E) holds
5* = 5

Proof:

1) This follows from the definition o..

2) Under condition (E)o. is a convex risk measure by Proposition 3.6. Therefore
0x=0+=0byl). g

4 Risk allocation with cautious risk attitude

In this section we take an opposite regulatory point of view on risk allocation corre-
sponding to a cautious risk attitude. Tiegural allocation problem then is given by the
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supremal convolution

n n
T(X) == sup{ D oiXi) Y X = X}, (4.1)
i=1 i=1
wherep; are convex risk measures. It turns out however, that exceptin the trivial situation
wherePy = P = --- = P, = {P1} we do not get by (4.1) a convex risk measure.

As in Section 3 it seems natural to restrict the class of decompositions. Let

n
A(X) = {(Xi) =@X); 0<¢i <L) ¢ = 1} (4.2)
i—1

denote the class of admissible decompositions and define the value of the allocation
problem with cautious risk attitude which we call th@missible supremal convolution

by
n
™(X) = sup{ > i (Xi): (Xi) € A(X)}. (4.3)
i=1

T* is a convex monotone risk functional (witfi(0) = Y I, 0i (0)) butz* is not transla-
tion invariant in general. Obviously

™ <T. (4.4)
As in Theorem 3.5¢* can becal culated explicitly in terms of the representation scenarios

P; of gj.

Theorem 4.1 Let o; be convex risk measures with penalty functions «; and z* the cor-
responding admissible supremal convolution. Let P; := {Q € baP) : «i(Q) < oo}
Then

r*(X):sup{fX_dVH —/X+d/_\P|—ZOli(P|)§ PeP,l1<i Sn}-
I I i

Proof: As in the proof of Theorem 3.5 we obtain
T*(X) = supy i (¢iX)
(@)
= sup) _ sup(EpgiY — ai(R)), with Y := —X
(@) 7 PeP

= sup supZ(/indH —ai(F’|)>

(PE(P) (0) 5

= sup</Y+d\i/P. —/Yd/i\P. —Zm(H))

(R)

:sup(/xd\i/P.—/X+d/i\P.—Zai(P.)>. O

(R)
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Remark 4.2 As consequence of Theorem 4.1 we see that

'@ =—inf {|AR|+ Y ai(P): Ren) (4.5)
and thus
D= a0 -1 |[AR[=1 VReP (4.6)
& P1=Py=---=Ppand|Pj| =1

As in Section 3 we obtain from the modified allocation problem a meaningful convex
risk measure.

We define theonvex admissible suprematonvolution risk measureT* by
T*X)=infimeR; X+ me A} =infimeR; "(X+m) <0}, 4.7)

whereA;» = {X € L*°(P); t*(X) < 0}. Then we obtain

Proposition 4.3 The convex admissible supremal convolution risk measure 7* is the
largest coherent risk measure o such that

ogi<o=<t" forl<i=<n.

The admissibility of a decomposition seems to be a natural postulate. Thus the ad-
missible supremal convolution risk measure offers a solution to the risk measure problem
for markets under a cautious attitude towards risk.
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