Synthesis and chromatographic characterization of [Tc-99m]technetium-humic acid species
-
D. Rößler
A natural moor soil humic acid (HA) was labeled with Tc-99m via reduction of pertechnetate with stannous chloride. The humic acid species obtained were characterized by thin layer chromatography (TLC), gel permeation chromatography (GPC), sequential chromatographic analysis (SCA), paper electrophoresis and micropore filtration. Labeling was found to take place in all ranges of molecular weight. Due to the complex humic acid composition and the formation of hydroxo species the labeling yields strongly depend on the separation conditions, ranging from 42% to 80%. The pH-dependent distribution of mobile and immobile species was determined by SCA for HTcO4, HA and for Tc-HA-species obtained after labeling. Geochemically relevant properties of HA remain unchanged after the labeling procedure, only macroscopic amounts of the reducing agent Sn2+ give rise to a shift to lower molecular weight species.
© 2015 Oldenbourg Wissenschaftsverlag GmbH, Rosenheimer Str. 145, 81671 München
Articles in the same Issue
- Formation of americium(III) complexes with aqueous silicic acid
- The reduction of plutonium and neptunium ions by acetaldoxime in nitric acid
- Complex formation of U(VI) with Bacillus-isolates from a uranium mining waste pile
- Longterm leaching of natural radionuclides from uranium mill tailings material: comparison of indoor and outdoor column experiments
- Enrichment analysis of uranium in uranium oxide by gamma-ray spectrometry without using calibration standards
- Gas phase chemistry of technetium and rhenium oxychlorides
- Synthesis and chromatographic characterization of [Tc-99m]technetium-humic acid species
- Retention of some hazardous radionuclides from nitric acid solution using tin(IV) antimonate as a cation exchanger
- Study of adsorption of zinc ions on hydrous zirconium oxide surface
- Radiometric analysis of the spent fuel pool water and reactor coolant of ET-RR.1
- Separation of carrier-free cerium radionuclides from different target matrix produced by heavy ion beams
Articles in the same Issue
- Formation of americium(III) complexes with aqueous silicic acid
- The reduction of plutonium and neptunium ions by acetaldoxime in nitric acid
- Complex formation of U(VI) with Bacillus-isolates from a uranium mining waste pile
- Longterm leaching of natural radionuclides from uranium mill tailings material: comparison of indoor and outdoor column experiments
- Enrichment analysis of uranium in uranium oxide by gamma-ray spectrometry without using calibration standards
- Gas phase chemistry of technetium and rhenium oxychlorides
- Synthesis and chromatographic characterization of [Tc-99m]technetium-humic acid species
- Retention of some hazardous radionuclides from nitric acid solution using tin(IV) antimonate as a cation exchanger
- Study of adsorption of zinc ions on hydrous zirconium oxide surface
- Radiometric analysis of the spent fuel pool water and reactor coolant of ET-RR.1
- Separation of carrier-free cerium radionuclides from different target matrix produced by heavy ion beams