
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of bis(2-phenylpyridin-1-ium)hexabromidoplatinate(IV) dihydrate, C₂₂H₂₄Br₆N₂O₂Pt

Kwang Ha^{*}

Chonnam National University, School of Applied Chemical Engineering, Research Institute of Catalysis, Gwangju 500-757, Republic of Korea

Received December 03, 2012, accepted February 15, 2013, available online May 17, 2013, CCDC no. 1267/3975

 $C_{22}H_{24}Br_6N_2O_2Pt$, triclinic, $P\overline{1}$ (no. 2), a = 7.711(1) Å, $b = 9.078(2) \text{ Å}, c = 11.018(2) \text{ Å}, \alpha = 69.643(4)^{\circ},$ $\beta = 71.268(4)^{\circ}, \gamma = 78.109(4)^{\circ}, V = 680.9 \text{ Å}^3, Z = 1,$ $R_{\text{gt}}(F) = 0.0317$, $wR_{\text{ref}}(F^2) = 0.0718$, T = 200 K.

Table 1. Data collection and handling.

Crystal: red blocks, size 0.06×0.10×0.11 mm Wavelength: Mo K_{α} radiation (0.71073 Å)

139.78 cm⁻¹

Diffractometer, scan mode: Bruker SMART 1000 CCD, φ and ω

52.14° $2\theta_{\rm max}$: N(hkl)_{measured}, N(hkl)_{unique} 4211, 2580 Criterion for I_{obs} , $N(hkl)_{gt}$: $I_{\rm obs} > 2 \ \sigma(I_{\rm obs}), \ 2069$

 $N(param)_{refined}$:

Programs: SHELX [5], ORTEP-3[6], PLATON [7]

Source of material

To a solution of K_2PtBr_6 (0.245 g, 0.325 mmol) in H_2O (30 ml)/ EtOH (30 ml) was added 2-phenylpyridine (ppy; 0.129 g, 0.830 mmol) and stirred for 72 h at room temperature. After evaporation of the solvent, the residue was washed with H₂O and dried at 50 °C, to give an orange powder (0.245 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from a CH₃CN solution. The crystallization water originating from the synthesis is still present.

Experimental details

Carbon-bound hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms with d(C-H) = 0.95 Åand $U_{iso}(H) = 1.2 U_{eq}(C)$. Nitrogen-bound hydrogen atom was located from the difference Fourier map and then refined with $U_{iso}(H) = 1.2 U_{eq}(N)$. The H atoms of the solvent water molecule were located from the difference Fourier map and then allowed to ride on their parent O atom in the final cycles of refinement with d(O-H) = 0.84 Å and $U_{iso}(H) = 1.5 U_{eq}(O)$. The highest peak (1.10) $e \cdot Å^{-3}$) and the deepest hole (-1.03 $e \cdot Å^{-3}$) in the difference Fourier map are located 1.09 Å and 1.11 Å from the atoms Br3 and Pt1, respectively.

Discussion

The asymmetric unit of the title crystal structure contains a protonated 2-phenylpyridine cation, one half of $[PtBr_6]^{2-}$ and a water molecule. The structure of the ionic compound is much different from that of the product of the analogous reaction of ppy with K₂PtCl₆, in which an anionic Pt(IV) complex [PtCl₄(C₁₁H₈N)] with a 2-phenylpyridinium counter-cation was synthesized [1]. The octahedral dianionic complex [PtBr₆]²⁻ is located on an inversion center. The distances d(Pt–Br) are nearly equivalent (2.4611(8) Å, 2.4662(8) Å and 2.4668(8) Å), and the $cis \angle Br-Pt-Br$ bond angles lie in the range of 89.81(3)-90.19(3)°. These values are similar to those found in the complexes $K_2[PtBr_6]$ [2], $[Rh(NH_3)_5Cl][PtBr_6]$ [3] and $(C_{21}H_{19}N_2)_2[PtBr_6]$ [4]. In the crystal structure, the ions and the water molecules are linked by intermolecular O-H···Br hydrogen bonds with $d(O \cdot \cdot \cdot Br) = 3.512(5) \text{ Å}, 3.513(5) \text{ Å} and 3.630(5) \text{ Å}, thereby form$ ing a chain structure along [100]. Each water molecule, as an Hbond acceptor, is linked to the 2-phenylpyridinium N-H group with $d(N \cdot \cdot \cdot O) = 2.744(8)$ Å. In addition, the nearly planar cations are stacked in columns also along [100]. When viewed down [100], the successive cations are stacked in the opposite direction. In the columns, several intermolecular π - π interactions between adjacent six-membered rings are present. For Cg1 (the centroid of ring C6-C11) and $Cg2^{1}$ (ring N1-C5, symmetry code i: -x,1-y,-z), the centroid-centroid distance is 3.967(5) Å and the dihedral angle between the ring planes is $1.9(4)^{\circ}$.

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	X	у	Z	$U_{ m iso}$
H(1N)	2i	0.115(9)	0.431(9)	0.257(8)	0.039
H(2)	2i	0.3599	0.7268	-0.0837	0.048
H(3)	2i	0.3784	0.8835	0.0391	0.056
H(4)	2i	0.2612	0.8086	0.2720	0.058
H(5)	2i	0.1354	0.5724	0.3794	0.049
H(7)	2i	0.3425	0.5773	-0.1774	0.048
H(8)	2i	0.3235	0.4076	-0.2892	0.054
H(9)	2i	0.2062	0.1680	-0.1709	0.051
H(10)	2i	0.0801	0.1048	0.0635	0.051
H(11)	2i	0.0936	0.2761	0.1746	0.037
H(1A)	2i	-0.0142	0.7848	0.5310	0.060
H(1B)	2i	0.1258	0.7246	0.5806	0.060

^{*} e-mail: hakwang@chonnam.ac.kr

 $C_{22}H_{24}Br_6N_2O_2Pt$

Table 3. Atomic co	oordinates and	displacement	parameters ((in Å ²).
--------------------	----------------	--------------	--------------	--------------------	----

Atom	Site	х	у	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pt(1)	1 <i>f</i>	1/2	0	1/2	0.0277(2)	0.0274(2)	0.0201(2)	-0.0081(2)	-0.0045(2)	-0.0069(2)
Br(1)	2i	0.4815(1)	0.28234(8)	0.47780(8)	0.0502(5)	0.0283(4)	0.0335(4)	-0.0095(3)	-0.0061(4)	-0.0100(4)
Br(2)	2i	0.81934(9)	0.00948(9)	0.35533(8)	0.0302(4)	0.0466(5)	0.0329(4)	-0.0119(3)	0.0012(3)	-0.0148(4)
Br(3)	2i	0.3857(1)	0.07260(9)	0.30017(8)	0.0443(4)	0.0443(5)	0.0265(4)	-0.0087(3)	-0.0157(4)	-0.0081(4)
N(1)	2i	0.1723(8)	0.5143(7)	0.2135(6)	0.038(4)	0.030(3)	0.028(4)	-0.007(3)	-0.005(3)	-0.011(3)
C(1)	2i	0.2360(9)	0.5523(8)	0.0798(7)	0.024(4)	0.034(4)	0.031(4)	-0.005(3)	-0.009(3)	-0.002(4)
C(2)	2i	0.314(1)	0.6945(8)	0.0116(9)	0.038(4)	0.030(4)	0.043(5)	-0.003(3)	-0.014(4)	0.001(4)
C(3)	2i	0.324(1)	0.7874(9)	0.085(1)	0.033(4)	0.027(4)	0.077(7)	-0.011(3)	-0.020(4)	-0.005(5)
C(4)	2i	0.256(1)	0.7435(9)	0.222(1)	0.045(5)	0.040(5)	0.066(7)	-0.015(4)	-0.014(5)	-0.020(5)
C(5)	2i	0.182(1)	0.6057(9)	0.2842(9)	0.047(5)	0.043(5)	0.040(5)	-0.009(4)	-0.009(4)	-0.020(4)
C(6)	2i	0.2217(9)	0.4438(8)	0.0103(7)	0.025(4)	0.036(4)	0.021(4)	0.000(3)	-0.004(3)	-0.013(3)
C(7)	2i	0.289(1)	0.4812(9)	-0.1275(8)	0.038(4)	0.046(5)	0.027(4)	0.001(4)	-0.003(4)	-0.007(4)
C(8)	2i	0.279(1)	0.379(1)	-0.1940(8)	0.043(5)	0.058(6)	0.028(5)	0.003(4)	-0.007(4)	-0.014(4)
C(9)	2i	0.207(1)	0.239(1)	-0.1248(9)	0.042(5)	0.048(5)	0.043(5)	0.009(4)	-0.014(4)	-0.025(5)
C(10)	2i	0.135(1)	0.2005(9)	0.0142(9)	0.043(5)	0.039(5)	0.047(5)	-0.002(4)	-0.018(4)	-0.013(4)
C(11)	2i	0.1429(9)	0.3028(8)	0.0797(8)	0.028(4)	0.036(4)	0.030(4)	0.001(3)	-0.013(3)	-0.011(4)
O(1)	2i	0.0345(7)	0.6974(6)	0.5710(5)	0.047(3)	0.036(3)	0.042(3)	-0.010(2)	-0.016(3)	-0.012(3)

Acknowledgments. This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094055). The author thanks the KBSI, Jeonju Center, for the X-ray data collection.

References

- Ha, K.: Crystal structure of 2-phenylpyridinium tetrachloro[2-(2-pyridyl)phenyl-κ²N, C]platinate(IV) monohydrate, [C₁₁H₁₀N]-[PtCl₄(C₁₁H₈N)]·H₂O. Z. Kristallogr. NCS 227 (2012) 29-30.
- Grundy, H. D., Brown, I. D.: A refinement of the crystal structures of K₂ReCl₆, K₂ReBr₆, and K₂PtBr₆. Can. J. Chem. 48 (1970) 1151-1154.
- Yusenko, K. V.; Gromilov, S. A.; Baidina, I. A.; Shubin, Yu. V.; Korol'kov, I. V.; Drebushchak, T. N.; Basova, T. V.; Korenev, S. V.: Synthesis, structure, and thermal decomposition of chloropentamminerhodium(III) hexabromoplatinate(IV). J. Struct. Chem. 43 (2002) 649-655.
- 4. Hu, J. J.; Li, F.; Andy Hor, T. S.: Novel Pt(II) mono- and biscarbene complexes: synthesis, structural characterization and application in hydrosilylation catalysis. Organometallics. **28** (2009) 1212-1220.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849-854.
- Spek, A. L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36 (2003) 7-13.