
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of calciumpermanganate tetrahydrate, Ca(MnO₄)₂·4H₂O, CaH₈Mn₂O₁₂

Florian Wächter, Michael Wörle, Serhiy Budnyk and Reinhard Nesper*

ETH Zürich, Wolfgang-Pauli-Str. 10, CH-8093, Zürich, Switzerland

Received May 30, 2012, accepted July 19, 2012, available online November 09, 2012, CSD no. 710084

Abstract

CaH₈Mn₂O₁₂, orthorhombic, *Pccn* (no. 56), a = 13.9791(19) Å, b = 5.5404(8) Å, c = 13.3908(18) Å, V = 1037.1(2) Å³, Z = 4, $R_{\rm et}(F) = 0.0318$, $wR_{\rm ref}(F^2) = 0.0659$, T = 293 K.

Table 1. Data collection and handling.

Crystal: violet needles, size $0.1\times0.1\times0.5$ mm Wavelength: μ : 29.79 cm^{-1} Diffractometer, scan mode: Bruker SMART CCD 1K, ω $2\theta_{\text{max}}$: 66.66° $N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 1462 $N(param)_{\text{refined}}$: 85 Programs: OLEX2 [1], SHELX [2]

Source of material

The title compound was synthesized by adding 0.9072 g, 4 mmol of Ag(MnO₄) [4] to a solution of 0.3409 g, 2 mmol of CaCl₂·2H₂O in 25 ml deionised water. The AgCl was separated by centrifugation. The solution was concentrated in vacuum to a volume of 10ml and transferred into a 20 ml scintillation vial with a 1mm hole in the cap. Crystals large enough for a single crystal diffraction experiment were formed after 25 days. A suitable crystal was selected and sealed in a Mark-tube together with mother liquor to prevent loss of crystal water. The data collection was performed at room temperature on a Bruker SMART Platform diffractometer equipped with a CCD-Detector. Attempts to perform measurements at low temperatures were not successful since the crystals were destroyed while cooling. Using Olex2 [1], the structure was solved with the XS [2] structure solution program using Direct Methods and refined with the XL [2] refinement package using a Full-Matrix-Least-Squares refinement.

Discussion

The chemistry of permanganates is well known [5] and many of them have structurally been characterized. However, for some of them only the unit cell parameters are known. The crystal structure of calcium permanganate tetrahydrate consists of $_{\infty}^{1}$ [Ca(H₂O)₄(MnO₄)_{4/2}]-chains extending along the *c*-axis. The coordination polyhedron of the Mn⁷⁺ion in the permanganate anion is a slightly distorted tetrahedron. The calcium cations are eight-foldly coordinated by four oxygen atoms of the water molecules and four oxygen atoms belonging to four different permanganate anions. The resulting coordination polyhedron is best described by a distorted square antiprism. The Ca-O_(water) distances are with 2.393(2) Å and 2.36(2) Å clearly shorter than the Ca-O_(permanganate) with 2.520(2) Å and 2.504(2) Å. When allowing for a maximum O–O distance in OH···O of 3 Å, the structure can be described as slabs of ${}^{1}_{\infty}$ [Ca(H₂O)₄(MnO₄)_{4/2}]-chains linked via hydrogen bonds. The slabs are stacked along the crystallographic *a*-axis. In the lithium permanganate ${}^{1}_{\infty}[Li(H_2O)_{6/2}]MnO_4$, described by Hoppe and Fischer [6] cations are not directly coordinated by the permanganate ions, as we observe it in this calcium permanganate, but exclusively surrounded by water molecules. [Li(H₂O)_{6/2}]-chains are linked via hydrogen bonds (maximum OH···O-distance of slightly less than 3 Å) to the permanganate

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	Z	$U_{ m iso}$	
H(5A)	8 <i>e</i>	0.382(2)	-0.023(4)	0.459(2)	0.031(7)	
H(5B)	8e	0.431(2)	0.078(5)	0.397(2)	0.041(8)	
H(6A)	8e	0.379(2)	0.544(6)	0.246(2)	0.05(1)	
H(6B)	8e	0.386(3)	0.615(7)	0.327(3)	0.11(2)	

^{*} Correspondence author (e-mail: nesper@inorg.chem.ethz.ch)

432 $CaH_{8}Mn_{2}O_{12} \\$

Table 3. Atomic coordinates and displacement parameters (in \mathring{A}^2).

Atom	Site	x	y	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Mn	8 <i>e</i>	0.13153(2)	0.51163(5)	0.09716(2)	0.0238(1)	0.0221(1)	0.0182(1)	0.0011(1)	0.0001(1)	-0.0004(1)
Ca	4c	1/4	1/4	0.34954(4)	0.0225(2)	0.0232(2)	0.0174(2)	0.0019(2)	0	0
O(1)	8e	0.0860(1)	0.7809(3)	0.1013(1)	0.0456(8)	0.0299(7)	0.0343(7)	0.0118(6)	-0.0043(7)	-0.0021(7)
O(2)	8e	0.0484(1)	0.3168(3)	0.0897(1)	0.0417(9)	0.0426(9)	0.063(1)	-0.0159(7)	0.0110(8)	-0.0122(9)
O(3)	8e	0.1999(1)	0.4892(3)	0.0008(1)	0.0446(9)	0.0422(8)	0.0278(7)	-0.0038(7)	0.0119(6)	-0.0083(7)
O(4)	8e	0.1924(1)	0.4674(3)	0.1970(1)	0.055(1)	0.051(1)	0.0271(7)	0.0136(8)	-0.0112(7)	0.0057(7)
O(5)	8e	0.3845(1)	0.0191(3)	0.4054(1)	0.0275(7)	0.0405(9)	0.0291(7)	0.0062(6)	0.0002(6)	0.0072(8)
O(6)	8 <i>e</i>	0.3741(2)	0.5115(4)	0.2971(1)	0.055(1)	0.053(1)	0.0289(8)	-0.0267(9)	-0.0069(8)	0.0109(9)

References

- 1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42 (2009) 339-341.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- 3. Ullmann's encyclopedia of industrial chemistry, 5. Edition Weinheim,
- Kamb, B.; Prakash, A.; Knobler, C., Acta Crystallogr. 22 (1967) 706.
 Chang, F. M.; Jansen, M.: Z. Kristallogr. 169 (1984) 295-298.
 Fischer, D.; Hoppe, R.: Z. Anorg. Allg. Chem. 590 (1990) 18-22.