
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of neodymium palladium antimonide, NdPd_{0.85}Sb₂

Olga Zhak^I, Stephan Oryshchyn^I, Khrystyna Malanyak^I, Volodymyr Babizhetskyy^I and Jürgen Köhler^{*, II}

Received March 16, 2012, accepted June 12, 2012, available online August 09, 2012, CSD no. 710081

Abstract

 $NdPd_{0.85}Sb_2$, tetragonal, P4/nmm (no. 129), a = 4.4098(3) Å, c = 9.6907(9) Å, V = 188.4 Å³, Z = 2, $R_{gt}(F) = 0.0369$, $wR_{ref}(F) = 0.0383, T = 295 \text{ K}.$

Table 1. Data collection and handling.

Crystal: metallic, prism-like,

size 0.0223×0.0259×0.0712 mm Wavelength: Mo K_{α} radiation (0.71073 Å)

311.6 cm⁻¹

Mercury70 CCD, 2×2 bin Diffractometer, scan mode:

144 4° 821, 821 N(hkl)_{measured}, N(hkl)_{unique}: Criterion for I_{obs} , $N(hk\dot{l})_{\text{gt}}$:

N(param)_{refined}:

 $I_{\rm obs} > 4 \,\sigma(I_{\rm obs}), \, 204$

WINCSD [5] Programs:

Source of material

A polycrystalline sample with the nominal composition NdPdSb₂ was prepared from Nd (99,99 %), Pd (99,99 %) and Sb (99,99 %) ingots. The components were mixed in a ratio of Nd:Pd:Sb = 1:1:2 with an excess of 2 at.% of Sb, because of the relatively high vapor pressure of Sb and pressed into a pellet. Then the sample was repeatedly melted in an arc-furnace under purified argon atmosphere to achieve homogeneity. Afterwards it was heated in a fused guarz glass tube under vacuum at 600 °C for 750 h, quenched with cold water. The air-stable sample was crushed and single crystals with a prismatic form and a metallic luster were selected for a single crystal structure determination.

Experimental details

The composition of the sample was checked using energydispersive X-ray spectroscopy (TESCAN 5130MM scanning electron microscope with Oxford Si-detector) and resulted in a ratio of Nd:Pd:Sb = 25.4:21.5:53.1 (standard deviation estimated to be about 1.5 at.%). No impurities were detected.

Discussion

The structure of the ternary antimonide NdPd_{0.85}Sb₂ [1, 2] belongs to the HfCuSi₂ type structure which is closely related to the structure type of BaAl₄ [3]. In the structure of NdPd_{0.85}Sb₂ the two crystallographically different Sb atoms and the Nd atoms fully occupy the positions 2a and 2c, respectively, whereas the position 2b is only 85 % occupied by Pd atoms. The structure of NdPd_{0.85}Sb₂ can be described in terms of double layers of corner sharing [Sb(2)Pd4/4Nd4/4] square antiprisms separated by flat nets of Sb1 atoms. Within these nets the Sb1 atoms are square planar coordinated by 4 Sb1 with distances of 311 pm indicating Sb-Sb bonding interactions. In contrast the Sb2 atoms exhibit Sb-Sb distances larger than 400 pm and can therefore be considered as discrete. The Pd-Sb and Nd-Sb distances in the structure of NdPd_{0.85}Sb₂ are in good agreement with the sum of the adjacent atomic radii ($r_{Nd} = 0.1814$ nm, $r_{Pd} = 0.1376$ nm, $r_{Sb} = 0.141$ nm [4]).

¹ Ivan Franko National University of Lviv, Analytical Chemistry Department, Kyrylo and Mefodija Str. 6, 79005 Lviv, Ukraine

II Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

^{*} Correspondence author (e-mail: J.Koehler@fkf.mpg.de)

 $NdPd_{0.85}Sb_2$

Table 2. Atomic coordinates ar	l displacement parameters (in Å ²)	i.
--------------------------------	-----------------------------	---------------------	----

Atom	Site	Occ. x	у	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Nd	2c	1/4	1/4	0.7544(3)	0.65(5)	0.65(5)	0.68(8)	0	0	0
Pd	2a	$0.85(1)^{-3/4}$	1/4	0	0.64(9)	0.64(9)	0.84(11)	0	0	0
Sb1	2b	3/4	1/4	1/2	0.50(7)	0.50(7)	1.13(9)	0	0	0
Sb2	2c	1/4	1/4	0.1507(4)	0.96(7)	0.96(7)	1.40(11)	0	0	0

Acknowledgments. The authors thank H. Gärtling (Max-Planck-Institute for Solid State Research, Stuttgart, Germany) for the single crystal data collection.

References

Sologub, O.; Hiebl, K.; Rogl, P.; Noel, H.; Bodak, O.: On the crystal structure and magnetic properties of the ternary rare earth compounds RETSb2 with RE = rare earth and T = Ni, Pd, Cu and Au. J. Alloys Compd. 210 (1994) 153-157.

- Kolenda, M.; Hofmann, M.; Leciejewicz, J.; Penc, B.; Szytula, A.; Zygmunt, A.: Magnetic structures of RTSb₂ (R=Pr, Nd; T=Cu, Pd). J. Alloys Compd. 315 (2001) 22-27.
- 3. Kripiakevich, P.I.: Structure types of the intermetallic compounds. Nauka, Moscow, 1977. (in Russ.)
- Wiberg, N.: Lehrbuch der anorganischen Chemie. Walter de Gruyter, Berlin-New York, 1995; pp. 1838-1840.
- Akselrud, L.G., Zavallij, P.Yu., Grin, Yu.N., Pecharsky, V.K., Baumgartner, B., Wolfel, E.: CSD97 - Universal Program Package for Single Crystal and Powder data Treatment. (1993) Materials Science Forum, v.133-136, 335-340.