
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of *catena*-[dichlorido- μ_2 -4,4'-dithiodipyridine- $\kappa^2 N:N'$ -zinc(II)], $C_{10}H_8Cl_2N_2S_2Zn$

Rüdiger W. Seidel^I, Christina Dietz^{II} and Iris M. Oppel*, III

- Ruhr-Universität Bochum, Lehrstuhl für Analytische Chemie, Universitätsstraße 150, 44780 Bochum, Germany
- II Lehrstuhl für Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
- III Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074 Aachen, Germany

Received November 27, 2011, accepted April 17, 2012, available online June 4, 2012, CCDC no. 1267/3752

Abstract

 $C_{10}H_8Cl_2N_2S_2Zn$, monoclinic, C2/c (no. 15), a = 12.317(2) Å, b = 9.868(2) Å, c = 10.947(2) Å, $\beta = 92.37(2)^\circ$, V = 1329.3 Å³, Z = 4, $R_{ort}(F) = 0.036$, $wR_{ref}(F^2) = 0.132$, T = 110 K.

Table 1. Data collection and handling.

Crystal: colourless prism, size 0.13×0.25×0.27 mm Wavelength: Mo K_{α} radiation (0.71073 Å) $25.39 \ cm^{-1}$ XcaliburTM2, Oxford Diffraction, ω Diffractometer, scan mode: 2799, 2799 N(hkl)_{measured}, N(hkl)_{unique}: $I_{\rm obs} > 2 \ \sigma(I_{\rm obs}), 2444$ Criterion for I_{obs} , $N(hkl)_{gt}$: $N(param)_{refined}$: Programs: CrysAlisPro [9], SUPERFLIP [10], EDMA [11], SHELXL-97 [12], DIAMOND [13], enCIFer [14]

Source of material

All starting materials were purchased and used as received. Methanol was of reagent grade. ZnCl₂ (7 mg, 0.05 mmol) was dissolved in 2 mL of methanol, AgCF₃SO₃ (23 mg, 0.09 mmol) was added and the mixture was stirred for 20 min. in the dark. Subsequently, the precipitate was removed by centrifugation and a solution of 1,10-phenanthroline (9 mg, 0.05 mmol) in 8 mL of methanol was added. The resulting solution was carefully layered onto a solution of 4,4'-dithiopdipyridine (11 mg, 0.05 mmol) in

10 mL of dichloromethane. After standing a couple of days at room temperature, while the solvent was allowed to evaporate slowly, a few colourless crystals of the title compound were found. The presence of chlorido ligands in the title compound can be attributed to incomplete chloride-triflate exchange.

Experimental details

The crystal studied was a non-merohedral twin. The twin operation is a twofold rotation about the c^* axis. The twinning was taken into account in the data reduction and structure refinement. The crystal structure was solved ab initio by charge flipping, using detwinned HKLF 4 data. The final structure refinement was carried out using the HKLF 5 option of SHELXL-97. Refinement of the ratio of the twin components yielded 0.8001(9):0.1991(9). Hydrogen atoms were placed at geometrically calculated positions and refined with constrained C–H distances of 0.95\AA and $U_{\rm iso}(\text{H}) = 1.2 U_{\rm eq}(\text{C})$, allowing them to ride on the parent carbon atoms.

Discussion

Crystal engineering of coordination polymers has attracted considerable interest since the early 1990s. Especially a plethora of one-dimensional coordination polymers have been described [1]. In this contribution, we report on the structure of a one-dimensional coordination polymer of the arched chain type, $[ZnCl_2(\mu-dtdp)]_n(dtdp =$ 4,4'-dithiodipyridine), comprising ZnCl₂ units joined by the axially chiral bent bridging ligand dtdp [2]. Zn²⁺ is known to be particularly suited to crystal engineering of coordination polymers and has been widely used to this end [3]. The title compound was obtained unintentionally during attempts to crystal engineer polymeric or discrete metallosupramolecular compounds from Zn2+ as metal nodes and dtdp, under the control of the chelate 1,10-phenanthroline (phen) coligand as a *cis*-protecting group. The attempt to combine Zn(phen)² building blocks with dtdp was, however, unsuccessful here, similar as already observed in an earlier, recently published work [4]. In contrast, a discrete M₂L₂-metallamacrocycle and a one-dimensional arched chain coordination polymer were previously successfully synthesised, respectively from Cu(phen)²⁺ and Cd(phen)²⁺ building blocks and dtdp [5]. In the title compound, the Zn²⁺ ions adopt a tetrahedral coordination sphere, comprised of two pyridyl groups of the dtdp ligands and two chlorido ligands. In the crystal, twofold crystallographic rotation axes parallel to the b axis direction run through both the ZnCl₂ unit and the disulfide moiety of the dtdp ligand. Thus, the asymmetric unit comprises only half of each unit. The Zn-N and Zn-Cl bond lengths are 2.047(2) and 2.2133(7) Å, respectively. The N-Zn-N angle is 103.6(1)° and the Cl-Zn-Cl angle is 126.28(4)°. The C-S-S-C torsion angle of dtdp is larger than the idealised 90° with a value of 91.9(2)°. Each polymeric strand contains only dtdp

^{*} Correspondence author (e-mail: iris.oppel@ac.rwth-aachen.de)

 $C_{10}H_8Cl_2N_2S_2Zn$

ligands of the same handedness (i. e. either the left-handed M or the right-handed P form) and are propagated by translational symmetry in the [001] direction, with a repeat unit corresponding to the c lattice parameter [10.947(2) Å]. The space group symmetry (C2/c) generates the enantiomeric conformation. The arched chains are tightly packed in such a way that the ZnCl2 units dovetail into the arch formed by the dtpd ligands of an adjacent polymeric chain in the baxis direction. The layers thus formed stack along the b axis direction. Two analogous arched chain coordination polymers composed of tetrahedally coordinated Zn²⁺ ions and dtdp, which are isomorphous to the title compound, were reported previously: $[Zn(CH_3COO)_2(\mu-dtdp)]_n$ (CSD refcode: FAYQUS) [6] and $[Zn(NCS)_2(\mu-dtdp)]_n$ (CSD refcode: CEBLUR) [7]. It should be noted that both were originally described in the non-centrosymmetic space group Cc, but a re-interpretation of both, where the space group C2/c was assigned (CSD refcodes: FAYQUS01 and CEBLUR01), was reported afterwards [8].

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	х	y	Z	$U_{ m iso}$	
H(2)	8f	0.6572	0.2576	0.1601	0.023	
H(3)	Šf	0.6901	0.0997	0.0064	0.022	
H(5)	Šf	0.3944	0.2062	-0.1375	0.025	
H(6)	8f	0.3788	0.3581	0.0219	0.025	

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Zn(1)	4 <i>e</i>	1/2	0.44980(4)	1/4	0.0168(2)	0.0164(2)	0.0167(2)	0	-0.0029(2)	0
Cl(1)	8 <i>f</i>	0.34197(5)	0.55114(6)	0.21146(6)	0.0181(3)	0.0233(4)	0.0279(3)	0.0036(2)	-0.0049(2)	-0.0014(2)
S(1)	8 <i>f</i>	0.56869(5)	0.01630(7)	-0.19645(5)	0.0215(3)	0.0192(3)	0.0163(3)	0.0029(2)	0.0025(2)	0.0007(2)
N(1)	8 <i>f</i>	0.5211(2)	0.3214(2)	0.1060(2)	0.019(1)	0.017(1)	0.0171(9)	-0.0005(8)	-0.0013(7)	0.0011(7)
C(2)	8 <i>f</i>	0.6109(2)	0.2460(3)	0.0991(2)	0.018(1)	0.020(1)	0.018(1)	-0.002(1)	-0.0031(9)	0.0028(9)
C(3)	8 <i>f</i>	0.6255(2)	0.1524(3)	0.0078(2)	0.017(1)	0.019(1)	0.021(1)	-0.0005(9)	0.0012(9)	0.0025(9)
C(4)	8 <i>f</i>	0.5439(2)	0.1371(2)	-0.0816(2)	0.021(1)	0.014(1)	0.014(1)	-0.0005(9)	0.0034(8)	0.0028(8)
C(5)	8 <i>f</i>	0.4513(2)	0.2148(3)	-0.0766(2)	0.024(1)	0.020(1)	0.017(1)	0.002(1)	-0.0040(9)	0.0002(9)
C(6)	8 <i>f</i>	0.4429(2)	0.3050(3)	0.0183(2)	0.022(1)	0.020(1)	0.021(1)	0.005(1)	-0.0024(9)	0.0000(9)

Acknowledgments. We would like to thank Bayer Material Science for financial support.

References

- Leong, W. L.; Vittal, J. J.: One-Dimensional Coordination Polymers: Complexity and Diversity in Structures, Properties, and Applications. Chem. Rev. 111 (2011) 688-764.
- Horikoshi, R.; Mochida, T.: Metal complexes of 4,4'-dipyridyldisulfidestructural diversity derived from a twisted ligand with axial chirality. Coord. Chem. Rev. 259 (2006) 2595-2609.
- Erxleben, A.: Structures and properties of Zn(II) coordination polymers. Coord. Chem. Rev. 246 (2003) 203-228.
- Seidel, R. W.; Dietz, C.; Oppel, I. M.: Structural insight into repeatedrhomboid coordination polymers from 4,4'-dithiodipyridine and zinc nitrate.Struct. Chem. 22 (2011) 1225-1232.
- Seidel, R. W.; Dietz, C.; Oppel, I. M.: A Polymeric Arched Chain and a Chair-like M₂L₂-Metallamacrocycle Crystal Engineered of [M(phen)]²⁺ (M = Cu, Cd; phen = 1,10-Phenanthroline) Corner Units and the Bent Ligand 4,4'-Dithiodipyridine. Z. Anorg. Allg. Chem. 637 (2011) 94-101.

- 6. Ng, M. T.; Deivaraj, T. C.; Klooster, W. T.; McIntyre, G. J.; Vittal, J. J.: Hydrogen-Bonded Polyrotaxane-like Structure Containing Cyclic $(H_2O)_4$ in $[Zn(OAc)_2(\mu\text{-bpe})]_2$ H_2O : X-ray and Neutron Diffraction Studies. Chem. Eur. J. 10 (2004) 5853-5859.
- Suen, M.-C.; Wang, J.-C.: Syntheses and structural characterization of inifinite coordination polymers from bipyridyl ligands and zinc salts. Struct. Chem. 17 (2006) 315-322.
- Marsh, R. E.: Space groups P1 and Cc: how are they doing? Acta Crystallogr. B65 (2009) 782-783.
- Agilent Technologies: CrysAlis^{Pro} Software system, version 1.171.35.15, Agilent Technologies UK Ltd, Oxford, UK 2011.
- Palatinus, L.; Chapuis, G.: SUPERFLIP a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40 (2007) 786-790.
- van Smaalen, S.; Palatinus, L.; Schneider, M.: The maximum-entropy method in superspace. Acta Cryst. A59 (2003) 459-469.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2g. Crystal Impact, Bonn, Germany 2011.
- 14. Allen, F. H.; Johnson, O.; Shields, G. P.; Smith, B. R.; Towler, M.: CIF applications. XV. enCIFer: a program for viewing, editing and visualising CIFs. J. Appl. Crystallogr. 37 (2004) 335-338.