
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of diaquabis(2-ethyl-4-carboxylato-5-carboxy-1H-imidazole- $\kappa^2 N^3$, O^4)manganese(II) — water (1:3), [Mn(H₂O)₂(C₇H₇N₂O₄)₂] · 3H₂O

Cheng-Jun Hao*,I, Hui XieI and De-Yong LiII

Received April 7, 2011, accepted and available on-line December 22, 2011; CCDC no. 1267/3506

Abstract

 $C_{14}H_{24}MnN_4O_{13}$, triclinic, $P\overline{1}$ (no. 2), a = 7.2920(8) Å, b = 8.964(1) Å, c = 9.510(1) Å, $\alpha = 64.269(1)^{\circ}$, $\beta = 88.749(2)^{\circ}$, $\gamma = 71.840(1)^{\circ}$, V = 527.4 Å³, Z = 1, $R_{gt}(F) = 0.048$, $wR_{ref}(F^2) = 0.145$, T = 298 K.

Source of material

A mixture of MnCl (0.5 mmol, 0.06 g) and 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.95 g) dissolved in 10 ml H₂O and 5 ml CH₃OH with pH 8 adjusted by NaOH was stirred for half an hour. After filtration, the filtrate was kept at room temperature. Colorless crystals were obtained by the evaporation of the solvate after three weeks.

Experimental details

Checking the data with PLATON [1] as well as checkcif indicate that the crystal is definitely centrosymmetric space group $P\overline{1}$. The disorder is still present when refining the data in the space group P1. Carbon and nitrogen bound H atoms were placed at calculated positions and were refined in the riding mode with d(C—H) =0.93 Å, d(N-H) = 0.86 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C,N)$. H atoms of the water molecule were located in a difference Fourier map and refined with $U_{iso}(H) = 1.2 U_{eq}(O)$. Carboxyl H atoms were located in a difference Fourier map and were included in the refinement in the riding model with a d(O-H) restraint of 0.82(1) Å and $U_{iso}(H) = 1.5 U_{eq}$. One disordered lattice water molecule is half-occupied and is located close to an inversion center, one H atom of another water molecule is also half-occupied. The O6 shows elongated thermal ellipsoid, so one H atom of the water molecule was dealt with half occupancy and split into two atoms. Initially, the H atoms attached to the O6 atom were located from

Discussion

Imidazole-4,5-dicarboxylic acid (H₃Imda) can be deprotonated to generate three types of anions, namely Imda³⁻, HImda²⁻ and H₂Imda⁻, and react with metal ions to form fascinating complexes with different structures and useful properties. As an important derivative of H₃Imda, 2-ethyl-1*H*-imidazole-4,5-dicarboxylate has been rarely explored [2-4]. In previous studies, we have obtained a Ca(II) complex based on 2-ethyl-1*H*-imidazole-4,5-dicarboxylate under hydrothermal conditions [5].

The title compound $[Mn(H_2O)_2(C_7H_7N_2O_4)_2] \cdot 3H_2O$ forms discrete complexes in the crystal structure, consisting of one Mn(II) ion, two mono-deprotonated 2-ethyl-1H-imidazole-4,5dicarboxy anions, two coordinate water molecules and three solvate water molecules. Each Mn(II) ion is six-coordinated in a distorted octahedral environment, formed by two oxygen atoms (O1, O1¹) and two nitrogen atoms (N1, N1¹) from two 2-ethyl-4carboxylato-5-carboxy-1H-imidazole ligands in the equatorial plane and two coordinate water molecules in the apical sites (symmetry code i: 1-x, 1-y, 1-z). The distances Mn—O are 2.227(2) Å and 2.175(2) Å; d(Mn-N) = 2.247(2) Å. Each 2ethyl-4-carboxylato-5-carboxy-1H-imidazole ligand chelates Mn(II) in a bidentate coordination mode through its imidazole nitrogen atom and carboxylate oxygen atom. The crystal structure is stabilized by extensive hydrogen-bonding interactions (N-H···O and O-H···O). The uncoordinated water showed significantly elongated thermal ellipsoids, indicating that there is a certain degree of disorder. Thus, O7 located close to an inversion center is half-occupied, one H atom of the water molecule was dealt with half occupancy and split into two atoms.

Table 1. Data collection and handling.

Crystal: colorless block, size $0.21 \times 0.30 \times 0.40$ mm Wavelength: Mo K_{α} radiation (0.71073 Å) 7.01 cm Diffractometer, scan mode: Bruker SMART 1000 CCD, φ/ω $2\theta_{\text{max}}$: N(hkl)_{measured}, N(hkl)_{unique}: 2689 1822 Criterion for I_{obs} , $N(hkl)_{gt}$: $I_{\rm obs} > 2 \, \sigma(I_{\rm obs}), \, 1518$ N(param)_{refined}: 152 PLATON [1], SHELXS-97, SHELXL-97, Programs:

SHELXTL [5]

¹ College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China

II Pingdingshan Institute of Functional Materials, Pingdingshan 467044, Henan, P. R. China

the difference Fourier maps, then their positions were adjusted to meet the ideal O—H distances and ideal H–O–H angles of water molecules.

^{*} Correspondence author (e-mail: haochengjun2008@163.com)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site Occ.	x	у	z	$U_{ m iso}$	$U_{ m iso}$	
H(2)	2 <i>i</i>	0.8228	0.1846	0.1583	0.037		
H(3)	$\frac{2i}{2i}$	0.7675	-0.1605	0.6061	0.069		
H(5C)	2i	0.8163	0.5549	0.5915	0.061		
H(5D)	2i	0.8859	0.3802	0.6226	0.061		
H(6D)	2i	0.8196	0.2344	0.8663	0.085		
H(6E)	2i = 0.50	0.7363	0.1201	0.9755	0.085		
H(6F)	2i = 0.50	0.0350	0.0715	0.0818	0.085		

Table 2. Continued.

Atom	Site Occ.	x	у	Z	$U_{ m iso}$
H(7F)	2i 0.50	0.5293	0.0910	-0.0808	0.123
H(7G)	2i = 0.50	0.4760	0.0499	0.0684	0.123
H(6A)	2i	0.5587	0.6182	0.0768	0.046
H(6B)	2i	0.7043	0.5139	0.0007	0.046
H(7A)	2i	0.8145	0.6365	0.2028	0.088
H(7B)	2i	0.8390	0.7055	0.0237	0.088
H(7C)	2i	0.9674	0.5155	0.1451	0.088

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site Occ.	x	у	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Mn(1)	1h	1/2	1/2	1/2	0.0339(4)	0.0291(4)	0.0325(4)	-0.0008(3)	-0.0022(3)	-0.0220(3)
N(1)	2 <i>i</i>	0.6399(3)	0.3465(3)	0.3688(3)	0.029(1)	0.025(1)	0.028(1)	-0.001(1)	-0.003(1)	-0.016(1)
N(2)	2i	0.7761(4)	0.2039(3)	0.2350(3)	0.032(1)	0.036(1)	0.030(1)	-0.004(1)	0.002(1)	-0.023(1)
O(1)	2i	0.5544(3)	0.2202(3)	0.6710(3)	0.050(1)	0.037(1)	0.032(1)	-0.007(1)	0.006(1)	-0.021(1)
O(2)	2i	0.6733(4)	-0.0572(3)	0.7112(3)	0.069(2)	0.032(1)	0.034(1)	-0.012(1)	0.005(1)	-0.013(1)
O(3)	2i	0.8251(4)	-0.2178(3)	0.5611(3)	0.059(2)	0.028(1)	0.050(2)	-0.006(1)	-0.001(1)	-0.023(1)
O(4)	2i	0.9317(4)	-0.1600(3)	0.3287(3)	0.052(1)	0.036(1)	0.054(2)	0.001(1)	-0.001(1)	-0.032(1)
O(5)	2i	0.7836(3)	0.4691(3)	0.5985(3)	0.035(1)	0.038(1)	0.085(2)	0.002(1)	-0.013(1)	-0.041(1)
O(6)	2i	0.8319(4)	0.1579(4)	0.9614(3)	0.071(2)	0.099(2)	0.051(2)	-0.018(2)	0.010(1)	-0.049(2)
O(7)	2i = 0.50	0.551(2)	0.011(2)	0.014(2)	0.12(1)	0.110(7)	0.071(6)	-0.044(7)	0.028(7)	-0.034(4)
C(1)	2i	0.6341(4)	0.1079(4)	0.6251(3)	0.034(2)	0.035(2)	0.030(2)	-0.008(1)	-0.001(1)	-0.018(1)
C(2)	2i	0.6836(4)	0.1684(4)	0.4624(3)	0.027(1)	0.028(2)	0.029(2)	-0.005(1)	-0.004(1)	-0.017(1)
C(3)	2i	0.7700(4)	0.0781(4)	0.3804(3)	0.027(2)	0.029(2)	0.034(2)	-0.003(1)	-0.005(1)	-0.020(1)
C(4)	2i	0.8487(4)	-0.1131(4)	0.4233(4)	0.033(2)	0.029(2)	0.041(2)	-0.003(1)	-0.008(1)	-0.021(2)
C(5)	2i	0.6969(4)	0.3640(4)	0.2310(3)	0.028(2)	0.033(2)	0.029(2)	-0.004(1)	-0.003(1)	-0.019(1)
C(6)	2i	0.6867(5)	0.5322(4)	0.0942(4)	0.043(2)	0.039(2)	0.029(2)	-0.010(2)	-0.001(1)	-0.015(1)
C(7)	2i	0.8413(6)	0.6041(5)	0.1187(5)	0.068(3)	0.055(2)	0.047(2)	-0.029(2)	-0.006(2)	-0.012(2)

References

- Spek, A. L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36 (2003) 7-13.
- Zhang, F.-W.; Li, Z.-F.; Ge, T.-Z.; Yao, H.-C.; Li, G.; Lu, H.-J.; Zhu, Y.-Y.: Four Novel Frameworks Built by Imidazole-Based Dicarboxylate Ligands: Hydro(Solvo)thermal Synthesis, Crystal Structures, and Properties. Inorg. Chem. 49 (2010) 3776-3788.
- Li, S.-J.; Ma, X.-T.; Song, W.-D.; Li, X.-F.; Liu, J.-H.: Poly[[[diaquasodium]-μ₃-5-carboxy-2-ethyl-1*H*-imidazole-4-carboxylato-κ⁴N³, O⁴: O⁵:O⁵] monohydrate]. Acta Crystallogr. **E67** (2001) m295-m296.
 Li, S.-J.; Song, W.-D.; Miao, D.-L.; Hu, S.-W.; Ji, L. L.; Ma, D.-Y.: Syn-
- Li, S.-J.; Song, W.-D.; Miao, D.-L.; Hu, S.-W.; Ji, L. L.; Ma, D.-Y.: Synthesis, Structures, and Properties of a Series of New Coordination Polymers Built from 2-Ethyl-1*H*-imidazole-4,5-dicarboxylate Ligand. Z. Anorg. Allg. Chem. 637 (2011) 1246-1252.
- Wang, S.; Zhang, L.-R.; Li, G.-H.; Huo, Q.-S.; Liu, Y. L.: Assembly of two 3-D metal-organic frameworks from Cd(II) and 4,5-imidazoledicarboxylic acid or 2-ethyl-4,5-imidazoledicarboxylic acid. CrystEngComm 10 (2008) 1662-1666.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.