
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of triytterbium pentastannide, Sn₅Yb₃

Ming-Hui Ge*,I and John D. CorbettII

¹ College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, P. R. China

Received July 31, 2011, accepted and available on-line September 30, 2011, CSD no. 710073

Abstract

Sn₅Yb₃, orthorhombic, *Cmcm* (no. 63), a = 10.193(2) Å, b = 8.168(2) Å, c = 10.375(2) Å, V = 863.7 Å³, Z = 4, $R_{gt}(F) = 0.032$, $wR_{ref}(F^2) = 0.081$, T = 293 K.

Source of material

The compound was prepared from pure metals of ytterbium (Ames Laboratory, purity >99.9% total) and tin (Alfa Aesar, purity >99.9%), which were loaded into a tantalum tube already sealed at one end, subsequently arc-welded under an argon atmosphere, and finally sealed in an evacuated silica tube. All manipulations were performed in a nitrogen-filled glovebox with a moisture level below 0.1 ppm. Grey-black brittle crystals of Yb_3Sn_5 were obtained from an Yb_2Sn_3 composition and the sample was first heated to 1373 K and held for 5 h. The temperature was decreased to 973 K at a rate of 2 K/h and held there for

12 h, and then the temperature was decreased to 573 K at a rate of 3 K/h. The crystals are sensitive to air and moisture.

Discussion

Tin is very diverse in the formation of nominal Zintl phases and yields a variety of compounds containing isolated tin atoms, tin dimers, chains, networks, clusters and frameworks [1-6]. Several years ago, some isotypic A_3Tt_5 phases, namely Ba_3Pb_5 , Sr_3Sn_5 , Ba_3Sn_5 , Eu_3Sn_5 and RE_3Sn_5 (RE = La-Pr) [7-9], were reported to crystallize with a novel Pu_3Pd_5 -type structure. The existence of Yb_3Sn_5 was first reported in the paper of an updating phase diagram of the Yb-Sn system without crystal structure [10].

Yb₃Sn₅ crystallizes in a modified Pu₃Pd₅-type structure. Its substructures feature the novel [Sn₅] square pyramidal clusters. The polyanions have mm ($C_{2\nu}$) symmetry with 2-fold axes parallel to [100] and [010] axes. The tin clusters are slightly distorted square pyramids. The intra-cluster Sn—Sn distances range from 3.028 to 3.155 Å which are comparable to the values in Sr₃Sn₅, Ba₃Sn₅ and Eu₃Sn₅. The bond length d(Sn1-Sn3) = 3.049(1) Å is shorter than d(Sn2-Sn3) = 3.155(1) Å. The four tin atoms of the base in the pyramid are not located in a plane. The Sn—Sn distances in the base are all 3.028(1) Å. The pyramidal base is close to but not an ideal square plane in all this type of compounds. The bond angles ∠Sn1-Sn2-Sn1 and ∠Sn2-Sn1-Sn2 are 90.89(1)° and 88.69(1)°, respectively. From the figure one can see two types of longer intercluster distances, d(Sn2-Sn2) = 3.307 Å (base-tobase, thin solid lines) and d(Sn1-Sn3) = 3.515 Å (base-to-apex, dashed lines). They are 0.152 Å and 0.360 Å longer, respectively, than the largest intracluster distance. The former value is comparable to the corresponding value in metallic Zintl phase La₃In₅ [11], in which the short intercluster interaction was considered as bonding. The intervening Yb cations among the tin clusters make the structure dense and clearly influence the interactions between the tin clusters.

Table 1. Data collection and handling.

Crystal: grey-black grain, size $0.09 \times 0.09 \times 0.11 \text{ mm}$ Wavelength: Mo K_{α} radiation (0.71073 Å) 462.45 cm Diffractometer, scan mode: Bruker SMART APEX CCD, ω 56.52° N(hkl)_{measured}, N(hkl)_{unique}: 2487, 567 Criterion for I_{obs} , $N(hkl)_{gt}$: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 552$ N(param)_{refined}: SHELXS-97, SHELXL-97 [12], Programs: DIAMOND [13]

II Ames Laboratory, DOE and Department of Chemistry, Iowa State University, Ames 50010, U.S.A.

^{*} Correspondence author (e-mail: mhge@bipt.edu.cn)

 Sn_5Yb_3

Table 2. Atomic coordinates and	displacement parame	ters (in Å ²).
---------------------------------	---------------------	----------------------------

Atom	Site	x	у	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Yb(1)	4c	0	0.1271(1)	1/4	0.0088(4)	0.0078(4)	0.0043(4)	0	0	0
Yb(2)	8 <i>e</i>	0.29353(6)	0	0	0.0095(4)	0.0105(3)	0.0079(4)	0	0	-0.0002(2)
Sn(1)	8g	0.71165(9)	0.2835(1)	1/4	0.0077(5)	0.0119(5)	0.0063(5)	-0.0018(3)	0	0
Sn(2)	8 <i>f</i>	0	0.8062(1)	0.4540(1)	0.0101(5)	0.0101(5)	0.0047(5)	0	0	-0.0010(3)
Sn(3)	4c	0	0.5197(2)	1/4	0.0098(6)	0.0056(6)	0.0057(7)	0	0	0

Acknowledgments. This research was supported by the Ames Laboratory operated for DOE by Iowa State University (contract no. DE-AC02-07CH11358) and the fund for Young Scholars from Beijing Institute of Petrochemical Engineering.

References

- Corbett, J. D.: Polyanionic clusters and networks of the early p-element metals in the solid state: beyond the Zintl boundary. Angew. Chem., Int. Ed. 39 (2000) 670-690.
- Leon-Escamilla, E. A.; Corbett, J. D.: Solid state compounds with tin-tin bonding. Yb₃₆Sn₂₃: a novel compound containing oligomeric tin anions. Inorg. Chem. 38 (1999) 738-743.
- Dubois, F.; Schreyer, M.; Fässler, T. F.: NaSn₂: a novel binary Zintl phase with 2D polyanions of realgar-type units [Sn₈]⁴⁻. Inorg. Chem. 44 (2005) 477-479.
- Von Schnering, H.-G.; Kröner, R.; Baitinger, M.; Peters, K.; Nesper, R.; Grin, Y: Crystal structure of the defect clathrate Cs₈Sn₄₄₂. Z. Kristallogr. NCS 215 (2000) 205–206.
- Hoffmann, S.; Fässler, T. F.: SrSn₄: a superconducting stannide with localized and delocalized bond character. Inorg. Chem. 42 (2003) 8748-8754
- Zhao, J.-T.; Corbett, J. D.: Zintl phases in alkali-metal-tin systems: K₈Sn₂₅ with condensed pentagonal dodecahedra of tin. Two A₈Sn₄₄ phases with a defect clathrate structure. Inorg. Chem. 33 (1994) 5721-5726.

- Zürcher, F.; Nesper, R.; Hoffmann, S. and Fässler, T. F.: Novel arachnotype X₅⁶- Zintl anions in Sr₃Sn₅, Ba₃Sn₅, and Ba₃Pb₅ and charge influence on Zintl clusters. Z. Anorg. Allg. Chem. 627 (2001) 2211-2219.
- Klem, M. T.; Vaughey, J. T.; Harp, J. G.; Corbett, J. D.: A₃Tt₅ phases Sr₃Sn₅, Ba₃Pb₅, and La₃Sn₅. Structure and bonding in a series of isotypic metallic compounds with increased electron count and their comparison with the nominal Zintl phase La₃In₅. Inorg. Chem. 40 (2001) 7020-7026.
- Lei, X.-W.; Mao, J.-G.: Synthesis, crystal structure and band structure of Eu₃Sn₅ with arachno-type Zintl anions. Chinese J. Struct. Chem. 26 (2007) 1403-1408.
- Manfrinetti, P.; Mazzone, D.; Palenzona, A.: An up-dating of the Yb-Sn phase diagram. J. Alloys Compounds 284 (1999) L1-L3.
- 11. Zhao, J.-T.; Corbett, J. D.: Square pyramidal clusters in La_3In_5 and Y_3In_5 . La_3In_5 as a metallic Zintl phase. Inorg. Chem. **34** (1995) 378-383.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 2.1a. Crystal Impact, Bonn, Germany 1999.