
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of diammonium hexaaquazinc(II) bis[$(\mu_{12}$ -molybdato)-tetracosa(μ_{2} -oxo)-dodecaoxo-dodecatungsten] — ammonia — water (1:4:36), [NH₄]₂[Zn(H₂O)₆][(MoW₁₂O₄₀)₂] · 4NH₃ · 36H₂O

Hai-Xing Liu*

Weifang University, College of Chemistry and Chemical Engineering, Microscale Science Institute, Weifang 261061, P. R. China

Received January 21, 2011, in revised form May 12, 2011, accepted and available on-line September 26, 2011; CSD no. 710062

Abstract

 ${
m H}_{104}{
m Mo}_2{
m N}_6{
m O}_{122}{
m W}_{24}{
m Zn},$ cubic, $Fm\overline{3}m$ (no. 225), a=22.540(2) Å, V=11452(2) Å³, Z=4, ${
m R}_{gl}(F)=0.041$, $w{
m R}_{ref}(F^2)=0.126$, T=298 K.

Source of material

A mixture of $Zn(Ac)_2$ (0.1 mmol, 0.021 g), diphenylamine (0.1 mmol, 0.017 g), $(NH_4)_2MoO_4$ (0.1 mmol, 0.03 g), and $(NH_4)_2WO_4$ (0.1 mmol, 0.037 g) were added into 20 mL water with 20% (v/v) ethanol and heated for 10 h at 313 K with stirring. The solution was obtained by filtration after cooling the reaction mixture to room temperature. Colorless block-shaped single crystals suitable for X-ray diffraction experiments were obtained after a few weeks.

Experimental details

The H atoms were generated geometrically and refined using a riding model, with d(N-H) and d(O-H) of 0.85 - 0.90 Å, and $U_{iso}(H) = 1.2 - 1.5 \ U_{eq}(N,O)$.

Discussion

Keggin-type polyoxometalates $[XM_{12}O_{40}]^{n-}$ (X = B, P, Si, etc.; M = Mo, W) and their derivatives have been investigated for over a century because of their rich structural chemistry and diverse physicochemical properties [1]. Of the wide applications of Keggin anions, potential activities as catalysts attract special attention [2-5]. Recently, several successful strategies have been developed to design materials based on POMs. In the field of modified POMs, more attention has been paid to polyoxoanion-

supported transition metal complexes, especially POMs containing Cu and Fe are of interest for their magnetic properties.

The crystal structure of the title compound consists of the Keggin anion, $[Zn(H_2O)_6]^{2+}$ and ammonium cations, lattice water and ammonia molecules. A regular tetrahedron is formed by four O1 atoms and a Mo atom at the center of the anion group. Mo and W atoms are interlinked by O1 atoms. Each O1 atom is connected to three W atoms. W atoms are coordinated by six O atoms to form a distorted octahedron. Two O2 atoms and two O3 atoms are located in the equatorial plane. Four of six O atoms bridge the neighboring W atoms. The bonds lengths are d(W1-O1) =2.16(1) Å and d(W1-O4) = 1.77(2) Å. The bond angles of O1-Mo1-O1, O2-W1-O3 are 109.5(1)° and 162.2(6)°, respectively. The distance from W1 atom to the equatorial plane (formed by O2 and O3) is 0.30 Å. The O4 atom is a terminating atom. Mo and W atoms form a cage-like structure with Mo atom being the center, and W atoms rowing outside. There are intermolecular hydrogen bonds in the complex. The lattice NH₃ and H₂O molecules are connected to anions and cations by hydrogen bonds. The Zn atom is coordinated by O atoms of water molecules. There is a hydrogen bond at atom O7 but not at atom O8. A stable three-dimensional network structure is formed by the help of the O-H···O and O-H···N intermolecular hydrogen bonds.

Table 1. Data collection and handling.

Crystal: colorless block, size $0.09 \times 0.10 \times 0.10$ mm Wavelength: Mo K_{α} radiation (0.71073 Å)

avelength: Mo K_{α} radiation (0.71073 Å) 245.34 cm⁻¹

Diffractometer, scan mode: Bruker SMART CCD, φ/ω $2\theta_{\rm max}$: 50.06°

 $N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$: 11936, 568

Criterion for I_{obs} , $N(hkl)_{\text{gt}}$: $I_{\text{obs}} > 2 \ \sigma(I_{\text{obs}})$, 488 $N(param)_{\text{refined}}$: 56

Programs: SHELXS-97, SHELXL-97, SHELXTL [6]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site Occ.	x	У	Z	$U_{ m iso}$
H(1A)	192 <i>l</i> 0.17	0.4695	0.4806	0.7752	0.051
H(1B)	24e	1/2	1/2	0.8235	0.051
H(1C)	96i 0.25	1/2	0.5336	0.7688	0.051
H(5)	192 <i>l</i> 0.25	0.4408	0.4844	0.1001	0.039
H(6)	96k - 0.50	0.2343	0.5305	0.7343	0.063
H(7)	96 <i>k</i>	0.3584	0.4694	0.8584	0.020
H(8C)	192 <i>l</i> 0.25	0.1723	0.4772	0.8685	0.086
H(8D)	48i	0.1175	1/2	0.8825	0.086
H(9C)	96 <i>j</i> 0.50	0.0273	1/2	0.9300	0.097

^{*} e-mail: haixingliu@tom.com

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site Occ.	x	y	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
W(1)	96 <i>k</i>	0.25708(4)	0.36025(3)	½+y	0.0247(6)	0.0198(5)	U_{22}	0.0004(2)	U_{12}	-0.0053(3)
Mo(1)	8 <i>c</i>	1/4	1/4	3/4	0.025(2)	U_{11}	U_{11}	0	0	0
Zn(1)	4 <i>a</i>	1/2	1/2	0	0.030(3)	U_{11}	U_{11}	0	0	0
N(1)	24e	1/2	1/2	0.786(2)	0.04(2)	U_{11}	0.05(3)	0	0	0
O(1)	32 <i>f</i>	0.2993(6)	x	1/2+x	0.021(5)	U_{11}	U_{11}	-0.001(6)	U_{12}	U_{12}
O(2)	96 <i>k</i>	0.2018(4)	¹/ ₂ —x	0.8803(6)	0.023(5)	U_{11}	0.023(7)	0.000(6)	0.001(4)	-0.001(4)
O(3)	96 <i>k</i>	0.3194(5)	0.4066(7)	1/2+x	0.033(5)	0.029(8)	U_{11}	0.000(5)	-0.004(7)	U_{12}
O(4)	96k	0.2385(7)	0.4142(5)	1/2+y	0.05(1)	0.033(6)	U_{22}	0.000(5)	U_{12}	-0.012(8)
O(5)	96k - 0.25	0.475(2)	x	0.088(3)	0.03(2)	U_{11}	U_{11}	0.00(2)	U_{12}	U_{12}
O(6)	24d	1/4	1/2	3/4	0.05(2)	0.05(3)	U_{11}	0	0.00(2)	0
O(7)	48h	0.3741(9)	1/2	$^{1}/_{2}+\chi$	0.05(1)	0.04(2)	U_{11}	0	0.01(1)	0
O(8)	48 <i>i</i>	0.146(1)	1/2	1-x	0.07(1)	0.07(2)	U_{11}	0	0.00(2)	0
O(9)	48i 0.50	0.065(2)	1/2	1-x	0.08(3)	0.08(5)	U_{11}	0	0.00(4)	0

Acknowledgments. This study was supported by the Natural Science Foundation of Shandong Province (no. ZR2010BL025 and Y2008B30), State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (Jilin University) (no. 2011-13) and MOE Key Laboratory of Analytical Chemistry for Life Science (Nanjing University)(no. KLACLS1002).

References

- Hill C. L.: Introduction: Polyoxometalates Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems. Chem. Rev. 98 (1998) 1-2.
- Kozhevnikov I. V.: Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev. 98 (1998) 171-108
- 3. Li, H.-H.; Li, K.-W.; Wang, H.: Hydrothermal Synthesis and Visible-light Photocatalytic Properties of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆. Chin. J. Inorg. Chem. **3** (2009) 512-516.
- Liao, X.-M.; Chu, W.; Li, Y.: Effects of support pore size on new Cs_{2.5}H_{0.5}PW₁₂O₄₀/SiO₂ catalysts for the ring-opening polymerization of tetrahydrofuran Chin. Chem. Lett. 20 (2009) 344-347.
- Wu, H.; Zhou, M.; Qu, Y.; Li, H.; Yin, H.: Preparation and Characterization of Tungsten-substituted Molybdophosphoric Acids and Catalytic Cyclodehydration of 1,4-Butanediol to Tetrahydrofuran. Chin. J. Chem. Eng. 17 (2009) 200-206.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.