
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of caesium diaquamanganese(II) gallium phosphate, Cs[MnGa₂(PO₄)₃(H₂O)₂]

You-Jun Di* and Jun-Feng Wang

Department of Chemistry and Chemical Engineering, Shaanxi Institute of Education, Xi'an 710100, P. R. China

Received June 21, 2011, accepted and available on-line September 6, 2011; CSD no. 710069

Abstract

CsGa₂H₄MnO₁₄P₃, monoclinic, C12/c1 (no. 15), a = 13.482(5) Å, b = 10.407(3) Å, c = 8.913(3) Å, $\beta = 109.125(5)^{\circ}$, V = 1181.5 Å³, Z = 4, $R_{gl}(F) = 0.017$, $wR_{ref}(F^2) = 0.047$, T = 296 K.

Source of material

The title compound was synthesized from a mixture of 1.3001 g of Cs₂CO₃, 0.0937 g of Ga₂O₃, 0.4240 g of Na₂CO₃, 0.3065 g of H₃BO₃, 0.3451 g of MnCO₃, 3 mL of H₃PO₄, and 4 mL of H₂O in the molar ratio of 8:1:10:6:8:100:44. This mixture was sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 180 °C for about 8 days under autogenous pressure, then cooled to room temperature. The resulting block-shaped colorless crystals were collected and dried in air at ambient temperature.

FT-IR data are available in the CIF file.

Discussion

Since the discovery of the microporous aluminum phosphates, the hydrothermal synthesis and structural characterization of new open-framework solids templated by organic molecules have attracted considerable attention. In the past several decades, many metal and nonmetal phosphates with open-framework structures have been synthesized owing to their rich structural chemistry

The title crystal structure is similar to that of NH₄[CoGa₂(PO₄)₃ $(H_2O)_2$ [6], K[NiGa₂(PO₄)₃(H₂O)₂] [7], and NH₄[MeGa₂(PO₄)₃ $(H_2O)_2$ (Me=Mn, Fe, Ni) [8] in the asymmetric unit. It consists of one Cs⁺ cation and one [MnGa₂(PO₄)₃(H₂O)₂]⁻ anion. In the anion, there are two crystallographically distinct phosphorus sites, both of which have approximately regular tetrahedral coordination. The Ga atoms occur in GaO5 units with distorted trigonal bipyramidal shape and the Mn atoms are located in distorted octahedra MnO₄(OH₂)₂. The GaO₅, MnO₆ and PO₄ units are linked together through edge- and vertex-sharing to give a manganese-gallophosphate framework of composition [MnGa₂(PO₄)₃(H₂O)₂]⁻. The Ga—O distances are from 1.854(2) Å to 2.009(2) Å (average 1.909 Å) and the O-Ga-O angles are between 87.9(1)° and 176.46(9)°. The Mn—O distances are from 2.072(2) Å to 2.263(2) Å (average 2.18 Å) and the O-Mn-O angles are between 64.0(1)° and 169.1(2)°. The [MnGa₂(PO₄)₃(H₂O)₂]⁻ anions are also connected together through oxygen atoms shared by both gallium and phosphorus atoms to neighboring units forming a 3D open framework with 8membered rings channels along c axis, in which the Cs^+ cations are located. The Cs⁺ atom lies in a very distorted coordination with twelve near oxygen atoms and Cs1-O distances from 3.093(2) - 3.514(3) Å. H₂O is also involved in hydrogen bonding to Ga-O-P bridging oxygen atoms with O-O distances of 2.925 Å and 3.120 Å.

Table 1. Data collection and handling.

Crystal: colorless block, size $0.08 \times 0.11 \times 0.15$ mm Wavelength: Mo K_{α} radiation (0.71073 Å) 91.02 cm⁻¹ Bruker APEX-II CCD, φ/ω

 $2\theta_{\text{max}}$. 50° $N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$: 2993, 104Criterion for I_{obs} , $N(hkl)_{\text{gt}}$: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 994

N(param)_{refined}: 106

Programs: SHELXS-97, SHELXL-87, SHELXTL [9]

and the potential applications in ion exchange, adsorption, separation and catalysis [1]. To date, a number of MeGaPO₄ (Me = V, Mn, Fe, Co and Zn) have been prepared, the majority of which contain MO₄ (M = Me or Ga) and PO₄ units. To our knowledge, however, only four examples of manganese (II)-substituted gallium phosphate compounds have been reported, such as $(C_3N_2H_5)_8$ [Mn₈Ga₁₆P₂₄O₉₆] [2], [C₆N₂H₁₄][MnGa(HPO₄)₂ (PO₄)] [3], NH₄[MnGa₂(PO₄)₃(H₂O)₂] [4], and K[MnGa₂(PO₄)₃ (H₂O)₇] [5].

^{*} Correspondence author (e-mail: sjydiyj@163.com)

 $Cs[MnGa_2(PO_4)_3(H_2O)_2]$

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	$U_{ m iso}$	
H(2)	8 <i>f</i>	0.152(4)	-0.359(4)	0.000(5)	0.02(1)	
H(1)	8 <i>f</i>	0.159(4)	-0.251(5)	0.034(6)	0.04(2)	

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	х	у	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cs(1)	4 <i>e</i>	0	0.63967(3)	1/4	0.0244(2)	0.0142(2)	0.0252(2)	0	0.0080(1)	0
Ga(1)	8 <i>f</i>	-0.17122(3)	-0.07529(3)	-0.07591(4)	0.0103(2)	0.0087(2)	0.0083(2)	-0.0004(1)	0.0032(1)	0.0002(1)
Mn(1)	4e	0	-0.28166(7)	-1/4	0.0131(4)	0.0108(4)	0.0155(4)	0	0.0073(3)	0
P(1)	8 <i>f</i>	-0.29044(6)	0.12834(8)	-0.3295(1)	0.0104(4)	0.0093(4)	0.0098(4)	0.0012(3)	0.0049(3)	0.0008(3)
P(2)	4e	0	0.0039(1)	1/4	0.0097(5)	0.0094(6)	0.0076(5)	0	0.0035(4)	0
O(1)	8 <i>f</i>	-0.2725(2)	-0.0501(2)	0.0354(3)	0.014(1)	0.014(1)	0.014(1)	0.0000(9)	0.008(1)	0.0009(9)
O(2)	8 <i>f</i>	-0.2097(2)	0.0856(2)	-0.1679(3)	0.018(1)	0.011(1)	0.011(1)	0.0023(9)	0.005(1)	0.0036(9)
O(3)	8 <i>f</i>	-0.2362(2)	-0.2285(2)	-0.1597(3)	0.017(1)	0.008(1)	0.015(1)	-0.0020(9)	0.0065(9)	-0.0030(9)
O(4)	8 <i>f</i>	-0.0576(2)	-0.0850(2)	0.1126(3)	0.013(1)	0.013(1)	0.011(1)	0.0009(9)	0.0009(9)	-0.0002(9)
O(5)	8 <i>f</i>	-0.0737(2)	-0.0972(2)	-0.2028(3)	0.016(1)	0.011(1)	0.016(1)	-0.0004(9)	0.011(1)	-0.0002(9)
O(6)	8 <i>f</i>	-0.0977(2)	-0.3927(2)	-0.1652(3)	0.012(1)	0.017(1)	0.021(1)	0.001(1)	0.009(1)	0.004(1)
O(1W)	8 <i>f</i>	0.1199(2)	-0.3019(3)	-0.0120(3)	0.021(2)	0.022(2)	0.021(1)	0.001(1)	-0.002(1)	-0.002(1)

References

- 1. Jiang, J. X.; Yu, J. H.; Corma, A.: Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angew. Chem. Int. Ed. 49 (2010) 3120-3145.
- Bond, A. D.; Chippindale, A. M.; Cowley, A. R.; Readman, J. E., Powell, A. V.: Synthesis and characterisation of transition-metal-substituted gallium phosphates with the laumontite structure. Zeolites 19 (1997) 326-333.
- Chippindale, A. M.; Bond, A. D.; Cowley, A. R.: MnGaPO-2: Synthesis and Characterization of [MnGa(PO₃OH)₂(PO₄)][C₆N₂H₁₄], a New Microporous Manganese-Gallium Phosphate. Chem. Mater. 9 (1997) 2830-2835.
- Chippindale, A. M.; Cowley, A. R.; Bond, A. D.: A New Ammonium Manganese(II) Gallium Phosphate Hydrate: NH₄[MnGa₂(PO₄)₃(H₂O)₂]. Acta Cryst. C54 (1998) IUC9800061.
- Li, P.; Duan, X. C: Crystal structure of potassium manganese (II) gallium phosphate hydrate, K[MnGa₂(PO₄)₃(H₂O)₂]. Z. Kristallogr. 225 (2010) 631-632.

- Chippindale, A. M.; Cowley, A. R.; Walton, R. I.: Solvothermal synthesis and structural characterisation of the first ammonium cobalt gallium phosphate hydrate, NH₄[CoGa₂P₃O₁₂(H₂O)₂]. J. Mater. Chem. 6 (1996) 611-614
- Chippindale, A. M.; Sharma, A. V.; Hibble, S. J.: Potassium nickel(II) gallium phosphate hydrate, K[NiGa₂(PO₄)₃(H₂O)₂]. Acta Cryst. E54 (2009) i38-i39.
- Bieniok, A.; Brendel, U.; Lottermoser, W.; Amthauer, G.: Metallophosphates with mixed-polyhedral framework structures: syntheses and characterization. Z. Kristallogr. 223 (2008) 186-194.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.