


Refinement of the crystal structure of dipotassium tricadmium(II) tetraselenide, $K_2Cd_3Se_4$

Young-Tae Kim^I, Hoseop Yun^{II} and Kang-Woo Kim^{*I}

^I University of Incheon, Department of Chemistry, Incheon 406-772, Korea

^{II} Ajou University, Department of Chemistry, Suwon 443-749, Korea

Received February 9, 2011, accepted and available on-line April 28, 2011; CSD no. 710063

Abstract

$Cd_3K_2Se_4$, orthorhombic, $Pnma$ (no. 62), $a = 14.312(4)$ Å, $b = 10.604(3)$ Å, $c = 6.839(2)$ Å, $V = 1037.9$ Å 3 , $Z = 4$, $R_{gt}(F) = 0.027$, $wR_{ref}(F^2) = 0.065$, $T = 290$ K.

Source of material

$CdCl_2$ (0.020 g, 0.11 mmol) and K_2Se_2 (0.078 g, 0.33 mmol) were charged to a Pyrex tube with diameter of 9 mm under an argon atmosphere, and about 0.5 ml ethylenediamine was added as a solvent. While the solvent was being frozen, the Pyrex tube was evacuated (about 2.0×10^{-3} torr) and sealed with the use of a flame. The sealed tube was placed in a furnace and heated at 160 °C for 24 h, then cooled to room temperature. Yellow crystals were isolated and washed with diethyl ether several times (36 % yield, based on $CdCl_2$ used). The compound is insoluble in water and common organic solvents.

Discussion

Ternary low-dimensional cadmium chalcogenides, $A_2Cd_3Q_4$ (A = alkali metal; Q = S, Se, Te) were explored in particular to achieve the dimensional reduction in II-VI materials [1-2]. Dimensional reduction of CdQ by the incorporation of A_2Q resembles size reduction of CdQ particles into the nanometer range [2]. Nanometer-sized CdQ materials have attracted extensive research efforts last two decades and are still garnering a lot of attention [3-5]. The title compound is the first example of $A/Cd/Q$ (A = alkali metal; Q = S, Se, Te) ternary compounds to be prepared by a hydro (or solvo) thermal method. Until now, only the lattice parameters for $K_2Cd_3Se_4$ were reported, no complete structure determination was made [1].

The title crystal structure is composed of two-dimensional anionic layers $(Cd_3Se_4)_n^{2n-}$ and charge-balancing cations K^+ , representing the same structure as the other analogues of $A_2Cd_3Q_4$ (A = K, Q = S, Te; A = Rb, Q = S, Se) [1]. Other structurally characterized $A_2Cd_3Q_4$ compounds are $Rb_2Cd_3Te_4$ and $Cs_2Cd_3Te_4$, which crystallize in $K_2Zn_3O_4$ type and $Cs_2Zn_3S_4$ type, respectively [6]. The $(Cd_3Se_4)_n^{2n-}$ layer spreads out along the crystallographic b and c axes, with the repeating unit of a $Cd_3Se_4^{2-}$ cluster (figure, top). The $Cd_3Se_4^{2-}$ cluster is geometrically shaped as a truncated cube with one corner missing and consists of three Cd (II) metal ions and four Se^{2-} monoselenide ligands. In the truncated cube cluster, one Se atom could be regarded to be sitting on the apex and coordinating to the three Cd metal atoms in the puckered 6-member ring Cd_3Se_3 . Three-coordinated Cd atoms and two-coordinated Se atoms in the $Cd_3Se_4^{2-}$ cluster are connected to Se and Cd atoms of adjacent clusters to form a layered structure (figure, bottom). As a result, all Cd atoms are tetrahedrally coordinated and all Se atoms are triply coordinated. Tetrahedral coordination of Cd atoms is distorted as the $\angle Se-Cd-Se$ angles are ranging from 95.8° to 140.3°, and trigonal pyramidal coordination of Se atoms is encountered with the $\angle Cd-Se-Cd$ angles ranging from 73.6° to 108.1°.

Table 1. Data collection and handling.

Crystal:	yellow plate, size 0.04 × 0.10 × 0.48 mm
Wavelength:	Mo K_α radiation (0.7107 Å)
μ :	208.42 cm $^{-1}$
Diffractometer, scan mode:	MacScience MXC3, φ/ω
$2\theta_{\max}$:	55°
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$:	1207, 1207
Criterion for I_{obs} , $N(hkl)_{\text{gt}}$:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 1067
$N(\text{param})_{\text{refined}}$:	50
Programs:	SHELXS-97, SHELXL-97 [7], ORTEP-3 [8]

* Correspondence author (e-mail: kimkw@incheon.ac.kr)

Table 2. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	<i>x</i>	<i>y</i>	<i>z</i>	<i>U</i> ₁₁	<i>U</i> ₂₂	<i>U</i> ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
K(1)	4a	½	½	½	0.020(1)	0.018(1)	0.024(1)	0.0023(8)	-0.009(1)	-0.0014(9)
K(2)	4c	0.5333(2)	¼	-0.0218(3)	0.020(1)	0.018(1)	0.023(1)	0	-0.000(1)	0
Cd(1)	4c	0.29692(5)	¼	0.2710(1)	0.0160(4)	0.0130(3)	0.0108(3)	0	-0.0015(3)	0
Cd(2)	8d	0.24665(3)	0.40651(4)	-0.16373(7)	0.0149(2)	0.0139(2)	0.0119(2)	0.0014(2)	-0.0014(2)	0.0007(2)
Se(1)	4c	0.13853(7)	¼	0.0690(1)	0.0109(4)	0.0127(4)	0.0134(5)	0	0.0002(4)	0
Se(2)	4c	0.35560(7)	¼	0.6292(1)	0.0145(5)	0.0141(4)	0.0096(4)	0	0.0012(4)	0
Se(3)	8d	0.36723(5)	0.46791(6)	0.11281(9)	0.0116(3)	0.0113(3)	0.0121(3)	-0.0007(2)	0.0001(3)	-0.0014(2)

Acknowledgment. This work was supported in part by University of Incheon Research Grant in 2004.

References

1. Axtell, E. A.; Liao, J.-H.; Pikramenou, Z.; Kanatzidis, M. G.: Dimensional Reduction in II-VI Materials. A₂Cd₃Q₄ (A = K, Q = S, Se, Te; A = Rb, Q = S, Se): Novel Ternary, Low Dimensional Cadmium Chalcogenides, Produced by Incorporation of A₂Q in CdQ. *Chem. Eur. J.* **2** (1996) 656-666.
2. Axtell, E. A.; Liao, J.-H.; Pikramenou, Z.; Park, Y.; Kanatzidis, M. G.: K₂Cd₂S₃ vs CdS: Can the Properties of Quantum-Sized CdQ Semiconductors Be Emulated by Bulk Alkali Metal Ternary A/Cd/Q Phases (Q = Chalcogen)? *J. Am. Chem. Soc.* **115** (1993) 12191-12192.
3. Liu, Y.; Qiu, H.-Y.; Xu, Y.; Wu, D.; Li, M.-J.; Jiang, J.-X.; Lai, G.-Q.: Selective synthesis of wurtzite CdSe nanorods and zinc blende CdSe nanocrystals through a convenient solvothermal route. *J. Nanoparticle Res.* **9** (2007) 745-752.
4. Deng, Z.-X.; Li, L.; Li, Y.: Novel Inorganic-Organic-Layered Structures: Crystallographic Understanding of Both Phase and Morphology Formations of One-Dimensional CdE (E = S, Se, Te) Nanorods in Ethylenediamine. *Inorg. Chem.* **42** (2003) 2331-2341.
5. Alivisatos, A. P.: Semiconductor clusters, nanocrystals, and quantum dots. *Science* **271** (1996) 933-937.
6. Narducci, A. A.; Ibers, J. A.: Synthesis, crystal structures, and band gaps of Cs₂Cd₃Te₄ and Rb₂Cd₃Te₄. *J. Alloys Compd.* **306** (2000) 170-174.
7. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112-122.
8. Farrugia, L. J.: ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). *J. Appl. Crystallogr.* **30** (1997) 565.