
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of silver thallium phosphate, Ag₃Tl₂(PO₄)₃

Volker Dietrich, Dragan Pitzschke and Martin Jansen*

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany

Received July 29, 2010, accepted and available on-line January 27, 2011; CSD no. 710052

Abstract

Ag₃O₁₂P₃Tl₂, monoclinic, C12/c1 (no. 15), a = 13.138(3) Å, b = 13.111(3) Å, c = 6.725(1) Å, $\beta = 114.62(3)^{\circ}$, V = 1053.2 Å³, Z = 4, $R_{gl}(F) = 0.045$, $wR_{ref}(F^2) = 0.145$, T = 293 K.

Source of material

Ag₃Tl₂(PO₄)₃ was prepared by reacting Ag₂O (freshly precipitated from AgNO₃ and KOH solutions), Tl₂O₃ (freshly precipitated from Tl(NO₃)₃ · 3H₂O and KOH solutions) and (NH₄)₂HPO₄ (Acros Organics, > 99 %) in stainless-steel autoclave at elevated oxygen pressure and temperature [1]. Stoichiometric amounts of the starting materials were intimately mixed and placed into gold tubes which were sealed on one side and mechanically closed on the other. In a typical experiment, 300 mg of the starting mixture was heated up to 500 °C for 100 h at p(O₂) = 25 MPa. In order to grow single crystals, suitable for an X-ray diffraction analysis, 1.0 mL H₂O was added to the starting mixture as a mineralizer. The crystalline product was filtered off,

washed with deionized water and dried in air. The yellow crystals of $Ag_3Tl_2(PO_4)_3$ are stable towards air and moisture.

Discussion

Ligth yellow crystals of Ag₃Tl₂(PO₄)₃ have been encountered during the systematic investigation of silver thallium phosphates. The title compound is isostructural to β -Ag₃In₂(PO₄)₃ [2]. Two distorted octahedra TlO₆ are connected by a shared edge to form Tl_2O_{10} bioctahedra. The Tl—O bond distances vary from 2.140 to 2.234 Å, the O-Tl-O angles are between 81.263° and 111.716°. The bond lengths are thus in the expected range, and similar to those found in Na₅TlO₄ [3]. The phosphorus atoms are surrounded by 4 oxygen atoms, forming slightly distorted tetrahedra. The P—O bond distances are in the range of 1.533 to 1.564 Å, the O-P-O angles lie between 105.526° and 112.254°. The TlO₆ octahedra and the PO₄ tetrahedra are connected via corners, building a three-dimensional framework. The silver atoms are coordinated by six and eight oxygen atoms. The Ag2O₆ octahedron is moderately distorted with Ag—O bond distances in the range from 2.387 to 2.663 Å. Ag1 and Ag3 are coordinated by 8 oxygen atoms with Ag—O bond distances in the range between 2.480 and 2.877 Å (Ag1), 2.758 and 2.939 Å (Ag3), respectively. The structure can be regarded as alluaudite-like with a general formula [X2][X1][M1][M2]₂(PO₄)₃. The X1 (½ 0 0) position is occupied by Ag2 atoms while the X2 (0 0 0) position is vacant. The M1 position is occupied by Ag1 and Ag3, whereas the M2 position is occupied by the Tl atoms.

 Table 1. Data collection and handling.

Crystal: yellow irregular, size $0.03 \times 0.03 \times 0.05 \text{ mm}$ Wavelength: Mo K_{α} radiation (0.71073 Å) 365.00 cm Diffractometer, scan mode: Stoe IPDS II, ω $2\theta_{\text{max}}$: 4426, 930 N(hkl)_{measured}, N(hkl)_{unique}: Criterion for I_{obs} , $N(hkl)_{gt}$: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 924$ $N(param)_{refined}$: SHELXS-97, SHELXL-97 [4], Programs:

DIAMOND [5]

ture us a minoranzer. The crystamine product was intered ori,

Atom	Site	x	У	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ag(1)	4 <i>e</i>	1/2	0.2242(2)	1/4	0.032(1)	0.036(1)	0.040(2)	0	0.016(1)	0
Ag(2)	4b	1/2	0	0	0.032(1)	0.028(1)	0.032(1)	0.005(1)	0.002(1)	-0.0032(9)
Ag(3)	4 <i>e</i>	1/2	0.5112(3)	3/4	0.043(2)	0.066(2)	0.053(2)	0	0.017(1)	0
Tl(1) P(1)	8 <i>f</i> 4 <i>e</i>	0.23879(5)	0.15586(5) 0.2379(5)	0.6699(1) 3/4	0.0153(6) 0.012(3)	0.0166(6) 0.017(3)	0.0195(6) 0.019(3)	-0.0006(2) 0	0.0071(4) 0.005(2)	0.0011(2) 0

^{*} Correspondence author (e-mail: M.Jansen@fkf.mpg.de)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

8 Ag₃Tl₂(PO₄)₃

Table 2. Continued.

Atom	Site	x	у	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
O(1)	8 <i>f</i>	0.418(1)	0.166(1)	0.796(2)	0.023(7)	0.016(7)	0.031(8)	0.000(5)	0.008(6)	0.003(5)
O(2)	8 <i>f</i>	0.633(1)	0.079(1)	1.326(2)	0.020(7)	0.031(8)	0.028(7)	-0.005(6)	0.009(6)	-0.001(6)
O(3)	8 <i>f</i>	0.444(1)	0.306(1)	0.548(2)	0.019(6)	0.019(7)	0.020(7)	-0.001(5)	0.005(5)	0.004(5)
P(2)	8 <i>f</i>	0.7506(4)	0.1021(4)	1.3524(7)	0.017(2)	0.015(2)	0.018(2)	-0.001(2)	0.009(2)	0.000(2)
O(4)	8 <i>f</i>	0.180(1)	0.1594(9)	0.932(2)	0.022(7)	0.016(7)	0.024(7)	0.003(5)	0.015(6)	0.002(5)
O(5)	8 <i>f</i>	0.186(1)	-0.003(1)	0.650(2)	0.018(6)	0.020(7)	0.021(7)	0.000(5)	0.006(5)	-0.001(5)
O(6)	8 <i>f</i>	0.750(1)	0.170(1)	1.162(2)	0.028(8)	0.015(7)	0.020(7)	0.000(5)	0.010(6)	-0.002(5)

References

- Linke, C.; Jansen, M.: Über Ag₂SnO₃, das erste Silberstannat. Z. Anorg. Allg. Chem. 623 (1997) 1441-1446.
 Strelkov, M. A.; Zhizhin, M. G.; Komissarova, L. N.: Synthesis and crys-
- Stelstov, M. A., Zhizhin, W. G., Rohnssalova, E. N. Synthesis and crystal structure of three silver indium double phosphates. J. Solid State Chem. 179 (2006) 3664-3671.
 Hoppe, R.; Fink, D.: Na₅TlO₄, ein neues Oxothallat(III). Z. Anorg. Allg.
- Chem. **443** (1978) 193-200.
- 4. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.1e. Crystal Impact, Bonn, Germany 2007.