
© by Oldenbourg Wissenschaftsverlag, München

Refinement of the crystal structure of neodymium palladium phosphide, NdPdP

Volodymyr Babizhetskyy*,I, Stepan OryshchynII, Olga ZhakII, Oleg LysyyII and Arndt SimonI

Received July 22, 2010, accepted and available on-line November 30, 2010; CSD no. 710050

Abstract

NdPPd, hexagonal, P63/mmc (no. 194), a = 4.206(1) Å, c = 7.653(2) Å, V = 117.2 Å³, Z = 2, $R_{gt}(F) = 0.033$, $wR_{ref}(F^2) = 0.081$, T = 293 K.

Source of material

Polycrystalline samples of composition NdPdP were prepared from the elements: red phosphorus as powder, neodymium and palladium as ingots, all supplied with minimum purity of 99.9 %. Powder and freshly filed chips of the constituents in the nominal ratio of Nd: Pd: P = 1:1:1 were mixed and pressed into pellets. A small excess of phosphorus (2 at.%) was added to compensate for possible evaporation losses during the arc melting process. Prior

to arc-melting, the pellets (about 1 g each) were pre-reacted in evacuated silica tubes by gradual heating them to 1070 K, holding at this temperature for 3 days and then slowly cooling to room temperature. Then the buttons were arc melted, again heated just above the melting point in a high-frequency furnace (TIG-10/300, Hüttinger) under purified argon atmosphere for 1 hour at 1640 K and slowly cooled down to room temperature. After the sample was crushed, air-stable single crystals with prismatic shape and metallic luster were separated from the crushed sample and used for structure determination. The composition of samples was checked using energy-dispersive X-ray spectroscopy (TESCAN 5130MM scanning electron microscope with Oxford Si-detector). The presence of only neodymium, palladium and phosphorus in an atomic ratio of Nd: Pd: P = 32.3: 34.6: 33.1 was revealed (standard deviation estimated to be about 1.5 at.%).

Discussion

The ternary phosphide NdPdP [1] belongs to the ZrBeSi type structure, the ternary ordered variant of the binary AlB₂ type [2]. The coloring of the hexagonal net by Be and Si atoms and the alternating stacking of such nets changes the space group from P6/mmm to P63/mmc. Phosphorus and palladium atoms center the trigonal prisms formed by neodymium atoms. The nearest neighbours of Nd atoms are six Pd and six P atoms which form the hexagonal prism [Pd₆P₆]. The interatomic distances in the NdPdP structure are in the good agreement with the sum of atomic radii of the components.

Table 1. Data collection and handling.

Crystal: metallic prism, size $0.006 \times 0.048 \times 0.061 \text{ mm}$ Wavelength: Ag K_{α} radiation (0.56086 Å) 157.72 cm Diffractometer, scan mode: STOE IPDS 1, φ $2\theta_{\text{max}}$: 56.14° N(hkl)_{measured}, N(hkl)_{unique}: 2128, 139 Criterion for I_{obs} , $N(hkl)_{gt}$: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 119$ *N*(*param*)_{refined}: SHELXL-97 [3], DIAMOND [4] Programs:

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Nd(1)	2 <i>a</i>	0	0	1/2	0.0053(3)	$U_{11} \ U_{11} \ U_{11}$	0.0064(4)	½U ₁₁	0	0
Pd(2)	2 <i>c</i>	1/3	/ ₃	3/4	0.0052(4)		0.0108(5)	½U ₁₁	0	0
P(3)	2 <i>d</i>	2/3	2/ ₃	3/4	0.005(1)		0.014(2)	½U ₁₁	0	0

^{*} Correspondence author (e-mail: v.babizhetskyy@fkf.mpg.de)

^I Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany

II Ivan Franko National University of Lviv, Analytical Chemistry Department, Kyrylo and Mefodij Str. 6, 79005 Lviv, Ukraine

2 NdPdP

References

- 1. Johrendt, D.; Mewis, A.: Darstellung und Kristallstruktur der Verbindungen SEPdP (SE = Seltenerdelement). Z. Naturforsch. **B45** (1990) 1262-1266.
- 2. Kuz'ma, Yu.; Chykhrij, S.: Chapter 156 Phosphides. In: *Handbook on the Physics and Chemistry of Rare Earths* (Eds. K. A. Gschneider (Jr.), L. Eyring), Vol. 23, p. 285-434. Elsevier, Amsterdam 1996.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 2.1c. Crystal Impact, Bonn, Germany, 1999.