

Crystal structure of *N*-(2,4-dimethyl-6-nitrophenyl)acetamide, $C_{10}H_{12}N_2O_3$

Hu-Kui Chen* and Fei-Wen Zhao

Baoji University of Arts and Sciences, Department of Chemistry, Baoji 721007, Shaanxi, P. R. China

Received March 22, 2010, accepted and available on-line April 22, 2010; CCDC no. 1267/2981

Abstract

$C_{10}H_{12}N_2O_3$, tetragonal, $P4_3$ (no. 78), $a = 8.4653(8)$ Å, $c = 14.904(1)$ Å, $V = 1068.0$ Å 3 , $Z = 4$, $R_{gt}(F) = 0.031$, $wR_{ref}(F^2) = 0.085$, $T = 298$ K.

Source of material

A solution of 2,4-dimethylacetanilide (24.2 g, 0.2 mol), acetic acid (23 mL) and acetic anhydride (19 mL) was refluxed for 1 h and cooled to 35 °C. Then, the mixed solution of concentrated sulfuric acid (35 mL) and concentrated nitric acid (17 mL) was slowly dropped into it after concentrated sulfuric acids (40 mL) was added. The mixture was reacted for 1 h and cooled to the room temperature, and was added to the cooled water and colorless precipitate appeared. The precipitate was filtered and washed with cooled water until the pH value of the filtrate is 7. The precipitate was recrystallized from ethanol to afford the title compound (38.5 g) in good yield (92.5 %, mp. 172 - 174 °C).

Experimental details

H atoms were positioned geometrically, with $d(N-H) = 0.86$ Å and $d(C-H) = 0.93$ (aromatic), 0.96 Å (methyl), respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2$ $U_{eq}(N)$ and $U_{iso}(H) = x U_{eq}(C)$, where $x = 1.2$ for aromatic H and $x = 1.5$ for methyl H atoms. The Flack parameter $-10(10)$ has no meaning for the absolute structure.

Discussion

2,4-dimethyl-6-nitroacetanide act as a very important intermediate of dyes and pigments [1-3]. It is of practical significance

for research and develop 2,4-dimethyl-6-nitroacetanide because of difficult synthesis process, higher costs and low yield, but in great demand [4].

The crystal structure of the title compound is built up by only the $C_{10}H_{12}N_2O_3$ molecules. All bond lengths and angles are in normal ranges. The dihedral angle between the phenyl ring and the nitrophenyl plane is 34.61(1)° (O2-N2-O3), the torsion angle of C1-N1-C9-C10 is 177.2(2)°, the phenyl ring is nearly planar and the mean deviation of the atoms from the least-square plane is 0.009 Å. The substituent groups are slightly twisted out of benzene mean plane, atoms N1, C7 deviate from phenyl ring by 0.102 Å and 0.049 Å, whereas N2, C8 by 0.099 Å and 0.033 Å on the opposite side, respectively. There are intermolecular hydrogen bonds in the complex: N1-H1…O1 ($x+1/2, -y-1/2, z-1$), C3-H3…O1 ($x+1/2, 1/2-y, z-1$), C10-H10B…O1 ($x+1/2, y-1/2, z-1$), C10-H10C…O3 ($x+1/2, -y-1/2, z-1$) and C5-H5…O2 ($x, y-1, z$). These hydrogen bonds play an very important role in the formation, stability and crystallization of the title compound.

Table 1. Data collection and handling.

Crystal:	colorless block, size 0.40 × 0.47 × 0.49 mm
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ :	0.97 cm $^{-1}$
Diffractometer, scan mode:	Bruker SMART CCD, φ/ω
$2\theta_{max}$:	50°
$N(hkl)$ measured, $N(hkl)$ unique:	4816, 985
Criterion for I_{obs} , $N(hkl)$ gt:	$I_{obs} > 2 \sigma(I_{obs})$, 859
$N(param)$ refined:	137
Programs:	SHELXS-97, SHELXL-97, SHELXTL [6]

Table 2. Atomic coordinates and displacement parameters (in Å 2).

Atom	Site	x	y	z	U_{iso}
H(1)	4a	0.9681	0.2433	0.3733	0.053
H(3)	4a	0.3804	0.3670	0.3869	0.060
H(5)	4a	0.6929	0.7191	0.3896	0.063
H(7A)	4a	0.4259	0.7783	0.4268	0.114
H(7B)	4a	0.3078	0.6393	0.4450	0.114
H(7C)	4a	0.3324	0.7020	0.3470	0.114
H(8A)	4a	0.9630	0.6813	0.3638	0.095
H(8B)	4a	1.0102	0.5306	0.3088	0.095
H(8C)	4a	1.0214	0.5293	0.4138	0.095
H(10A)	4a	1.0087	-0.0571	0.2477	0.095
H(10B)	4a	1.1030	0.0660	0.3052	0.095
H(10C)	4a	1.0892	0.0880	0.2010	0.095

* Correspondence author (e-mail: chenhukui2010@126.com)

Table 3. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	<i>x</i>	<i>y</i>	<i>z</i>	<i>U</i> ₁₁	<i>U</i> ₂₂	<i>U</i> ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
N(1)	4a	0.8872(3)	0.2443(3)	0.3384(2)	0.045(1)	0.046(1)	0.042(1)	0.002(1)	-0.008(1)	-0.005(1)
N(2)	4a	0.5637(3)	0.1314(3)	0.3662(2)	0.060(2)	0.044(1)	0.057(2)	-0.009(1)	0.008(1)	-0.001(1)
O(1)	4a	0.7755(2)	0.1387(2)	0.2151(1)	0.054(1)	0.058(1)	0.046(1)	0.0046(9)	-0.0078(9)	-0.0138(9)
O(2)	4a	0.6554(3)	0.0359(2)	0.3985(2)	0.083(2)	0.043(1)	0.089(2)	-0.002(1)	-0.001(1)	0.015(1)
O(3)	4a	0.4357(3)	0.0951(3)	0.3350(2)	0.071(2)	0.058(1)	0.113(2)	-0.021(1)	-0.006(2)	-0.011(1)
C(1)	4a	0.7614(3)	0.3477(3)	0.3593(2)	0.046(1)	0.042(1)	0.031(1)	-0.001(1)	-0.002(1)	-0.004(1)
C(2)	4a	0.6055(3)	0.2996(3)	0.3682(2)	0.051(2)	0.039(1)	0.038(1)	-0.007(1)	0.002(1)	-0.002(1)
C(3)	4a	0.4836(3)	0.4038(3)	0.3824(2)	0.049(2)	0.048(2)	0.053(2)	-0.005(1)	0.006(1)	0.000(1)
C(4)	4a	0.5149(4)	0.5644(3)	0.3898(2)	0.057(2)	0.045(2)	0.058(2)	-0.000(1)	0.003(1)	0.000(1)
C(5)	4a	0.6703(3)	0.6121(3)	0.3836(2)	0.064(2)	0.035(1)	0.059(2)	-0.004(1)	0.003(2)	-0.005(1)
C(6)	4a	0.7942(3)	0.5090(3)	0.3689(2)	0.051(2)	0.044(1)	0.044(2)	-0.008(1)	-0.002(1)	-0.000(1)
C(7)	4a	0.3833(4)	0.6816(4)	0.4034(3)	0.068(2)	0.060(2)	0.100(3)	0.013(2)	0.014(2)	-0.004(2)
C(8)	4a	0.9626(4)	0.5679(4)	0.3633(3)	0.059(2)	0.057(2)	0.074(2)	-0.015(1)	-0.007(2)	-0.003(2)
C(9)	4a	0.8873(3)	0.1474(3)	0.2669(2)	0.046(2)	0.043(1)	0.040(1)	-0.001(1)	-0.001(1)	-0.000(1)
C(10)	4a	1.0354(4)	0.0525(4)	0.2540(2)	0.055(2)	0.074(2)	0.061(2)	0.014(2)	-0.002(2)	-0.013(2)

Acknowledgment. This work was supported by the Science Research Foundation of Baoji University of Arts and Sciences (grant no. ZK073)

References

1. Qian, C. L.: The latest research on non-carcinogenic dye at abroad. Text. Chem. **3** (2005) 68-71.
2. Qi, L.; Pang, S. P.; Sun, C. H.: Synthesis Technique of 2-Methyl-6-nitroaniline. Chinese J. Energ. Mat. **17** (2009) 4-6.
3. Liang, C.: The producting status and developing tendency of dye intermediate in our country. Jiangsu Chem. Eng. **28** (2000) 17-19.
4. Su, J. Y.; Dou, L. L.; Liu, M. L.: Study on Synthesis of *p*-Nitroacetanilide. Chem. Propellants Polym. Mater. **7** (2009) 37-39.
5. Hu, S. W.; Rong, Z. M.; Liu, Y. C.: Catalytic Hydrogenation of 3,4-Dimethylnitrobenzene to 3,4-Dimethylaniline over Modified Skeletal Nickel. Fine Chem. **27** (2010) 170-173.
6. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. **A64** (2008) 112-122.