
Crystal structure of hemicalcium diaquanickel(II) catena-(monoborodiphosphate) monohydrate, Ca_{0.5}Ni(H₂O)₂[BP₂O₈] · H₂O

Prashanth W. Menezes, Stefan Hoffmann, Yurii Prots and Rüdiger Kniep*

Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany

Received September 28, 2006, accepted and available on-line March 20, 2007; CSD no. 409899

Abstract

BCa_{0.5}H₆NiO₁₁P₂, hexagonal, P6₁22 (no. 178), $a = 9.3715(3) \text{ Å}, c = 15.7261(6) \text{ Å}, V = 1196.1 \text{ Å}^3, Z = 6,$ $R_{\rm gt}(F) = 0.052$, $wR_{\rm ref}(F^2) = 0.131$, T = 295 K.

Source of material

Ca_{0.5}Ni(H₂O)₂[BP₂O₈] · H₂O was prepared by mild hydrothermal treatment of nickel oxide, calcium hydroxide, boric acid and phosphoric acid. A mixture of 0.2480 g Ca(OH)₂ (Aldrich, 95 %), 0.2500 g NiO (Alfa Aesar, 99 %), 0.4606 g B₂O₃ (Alfa Aesar, 99.98 %) and 2.3153 g H₃PO₄ (Merck, 85 %) was treated hydrothermally (molar ratio Ca:Ni:B:P = 1:1:4:6). The mixture was placed in a 10 ml Teflon-lined autoclave (filling degree 30 %), treated under autogenous pressure at 443 K for 8 days. The resulting product was filtered off, washed with water and dried at air. The chemical composition was confirmed by EDXS analysis.

Experimental details

The occupancy of the Ca1 site was refined freely and resulted in a value of 0.263(5). In the final refinement cycles it was fixed to 0.25. The positions of the hydrogen atoms close to O5 (coordinating water) were located in a Fourier difference map and refined as free variables, whereas the isotropic displacement parameters were restrained to $1.2U_{iso}(O5)$. For the oxygen atom of the hydrate water (O6), a split model was assumed with an occupancy factor of 0.5. The corresponding hydrogen atoms could not be localized.

Discussion

Helical borophosphates emerge to be the largest group of compounds among the borophosphates [1]. The group of compounds with $_{\infty}^{1}[BP_{2}O_{8}^{3}]$ helical chain anions have been synthesized in combination with different cations $M^{I}M^{II}$ and $M^{III}(M^{I} = \text{Li, Na,})$ K; M^{II} = Mg, Mn, Fe, Co, Ni Zn; M^{III} = Sc, In, Fe) [2-6]. The possibility of realizing de-/rehydration processes in helical borophosphates has been reported as well [4-7]. Our systematic investigation on borophosphate systems with nickel and alkali earth metals (Ca, Sr, and Ba) led to two new borophosphates of different composition: $CaNi[BP_2O_7(OH)_3][8]$ and $Ca_{0.5}Ni(H_2O)_2[BP_2O_8] \cdot H_2O$. The title compound is the first example of helical borophosphates containing the cation combination $M^{II}_{0.5}M'^{II}$.

The crystal structure of the title compound reveals an infinite onedimensional anionic partial structure. Condensation of PO₄ and BO₄ tetrahedra via common vertices leads to tetrahedral ribbons $_{\infty}^{1}[BP_{2}O_{8}^{3-}]$ which are arranged around a 6_{1} screw axis to form chiral helices. The spiral ribbons are built up from four-membered rings in which BO₄ and PO₄ groups alternate. Each BO₄ tetrahedron belongs to the adjacent four-ring of tetrahedra along the ribbon in such a way that all vertices of the BO₄ groups participate in bridging functions with PO₄ tetrahedra. The phosphate groups occupy the borders of the ribbons with two terminal oxygen atoms. Interatomic distances and angles within the tetrahedral helices are similar to related borophosphates [1-8]. The central channel is filled by a helix made up of water molecules. The ribbons are connected via NiO₄(H₂O)₂ octahedra (four oxygen atoms of PO₄ groups and two water molecules) and the free threads of the helices are half-occupied by calcium ions fixed by an irregular surrounding of six oxygen atoms from adjacent phosphate groups. The Ni—O bond distances range from 2.05 Å - 2.15 Å. The overall resulting framework is related to the topology of chiral zincophosphates (CZP).

Table 1. Data collection and handling.

Crystal: yellow prism, size $0.12 \times 0.11 \times 0.05 \text{ mm}$ Wavelength: Mo K_{α} radiation (0.71073 Å) 32.11 cm Diffractometer, scan mode: Rigaku AFC-7, φ/ω $2\theta_{\text{max}}$: 63.28° N(hkl)_{measured}, N(hkl)_{unique}: 9797, 1248 Criterion for I_{obs} , $N(hkl)_{\text{gt}}$: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 1173$ N(param)refined: Programs:

SHELXS-97 [9], SHELXL-97 [10], DIAMOND [11]

^{*} Correspondence author (e-mail: kniep@cpfs.mpg.de)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	Occ.	x	y	z	$U_{ m iso}$
H(51)	12 <i>c</i>	0.25	0.546(8)	0.675(7)	0.258(3)	0.033
H(52)	12 <i>c</i>		0.435(6)	0.620(6)	0.203(4)	0.033
Ca(1)	12 <i>c</i>		0.6396(5)	0.7526(5)	0.0768(2)	0.0295(7)

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site Occ.	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ni(1)	6 <i>b</i>	0.44582(5)	2 <i>x</i>	1/4	0.0216(3)	0.0202(4)	0.0233(4)	½ <i>U</i> 22	-0.0033(2)	0
P(1)	12c	0.6112(1)	0.8286(1)	0.41389(7)	0.0184(5)	0.0174(4)	0.0179(5)	0.0082(4)	-0.0016(4)	-0.0005(3)
O(1)	12c	0.5818(4)	0.8164(4)	0.5120(2)	0.019(1)	0.025(1)	0.016(1)	0.010(1)	-0.002(1)	-0.000(1)
O(2)	12c	0.7866(4)	0.9780(4)	0.3994(2)	0.024(1)	0.015(1)	0.025(2)	0.008(1)	0.002(1)	-0.001(1)
O(3)	12c	0.4820(4)	0.8606(4)	0.3763(2)	0.025(2)	0.028(2)	0.024(1)	0.014(1)	-0.005(1)	0.002(1)
O(4)	12c	0.6152(4)	0.6801(4)	0.3800(2)	0.031(2)	0.018(1)	0.023(1)	0.011(1)	-0.001(1)	-0.000(1)
O(5)	12c	0.5107(5)	0.7083(4)	0.2176(2)	0.030(2)	0.022(1)	0.029(2)	0.011(1)	-0.006(1)	-0.000(1)
O(6)	12c - 0.5	0.847(2)	0.855(2)	0.152(1)	0.033(4)	0.048(5)	0.04(1)	0.024(3)	0.002(4)	0.014(5)
B(1)	6b	0.1514(4)	2x	1/4	0.014(2)	0.019(2)	0.020(3)	$^{1}\!\!/_{2}U_{22}$	-0.001(2)	0

Acknowledgment. The authors would like to thank Mrs. P. Scheppan for EDXS analysis.

References

- Kniep, R.; Engelhardt, H.; Hauf, C.: A First Approach to Borophosphate Structural Chemistry. Chem. Mater. 10 (1998) 2930-2934, and references therein.
- Kniep, R.; Will, H. G.; Boy, I.; Röhr, C.: 6₁ Helices from tetrahedral ribbons
 ¹_∞[BP₂O₈^{3−}]: Isostructural Borophosphates M¹M^{II}(H₂O)₂[BP₂O₈]·H₂O
 (M¹ = Na, K; M^{II} = Mg, Mn, Fe, Co, Ni, Zn) and their dehydration to microporous phases M¹M^{II}(H₂O)[BP₂O₈]. Angew. Chem. 36 (1997)
 ¹⁰¹³–1014
- Boy, I.; Schäfer, G.; Kniep, R.: Crystal structure of sodium nickel diaqua catena-(monoboro-diphosphate) monohydrate, NaNi(H₂O)₂[BP₂O₈]·H₂O, at 293 K and 198 K. Z. Kristallogr. NCS 216 (2001) 11-12.
- Boy, I.; Stowasser, F.; Schäfer, G.; Kniep, R.: NaZn(H₂O)₂[BP₂O₈]·H₂O: A novel open-framework borophosphate and its reversible dehydration to microporous sodium zincoborophosphate Na[ZnBP₂O₈]·H₂O with CZP topology. Chem. Eur. J. 7 (2001) 834-839.
- Yilmaz, A.; Bu, X. H.; Kizilyalli, M.; Stucky, G. D.: Fe(H₂O)₂[BP₂O₈]·H₂O, a first zeotype ferriborophosphate with chiral tetrahedral framework topology. Chem. Mater. 12 (2000) 3243-3245.

- Ewald, B.; Prots, Yu.; Menezes, P.; Kniep, R.: Crystal structure of diaquaindium *catena*-monoboro-bisphosphate monohydrate, In(H₂O)₂[BP₂O₈] · H₂O. Z. Kristallogr. NCS 219 (2004) 351-352.
- Ewald, B.; Prots, Yu.; Kudla, C.; Grüner, D; Cardoso-Gil, R.; Kniep, R.: Crystal Structure and Thermochemical Properties of a First Scandium Borophosphate, Sc(H₂O)₂[BP₂O₈] · H₂O. Chem. Mater. 18 (2006) 673-679.
- Menezes, P. W.; Hoffmann, S.; Prots, Yu.; Kniep, R.: Crystal structure of calcium nickel(II) (monohydrogenmonophosphate-dihydrogenmonoborate-monophosphate), CaNi[BP₂O₇(OH)₃]. Z. Kristallogr. NCS 221 (2006) 429-430.
- Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
- Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 2.0f. Crystal Impact, Bonn, Germany 1998.