
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of praseodymium dimolybdenum disilicide carbide, PrMo₂Si₂C

E. Dashjav, W. Schnelle, F. R. Wagner, G. Kreiner and R. Kniep*

Max-Planck-Institut fur Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany

Received August 24, 2006, accepted and available on-line September 6, 2006; CSD no. 409892

Abstract CMo₂PrSi₂, tetragonal, P4/mmm (no. 123), a = 4.2139(3) Å, c = 5.4093(4) Å, V = 96.1 Å³, Z = 1,

 $R_{\rm gt}(F) = 0.020$, $wR_{\rm ref}(F^2) = 0.042$, T = 295 K.

Source of material

Single crystals with platy habit and with a metallic dark gray luster have been obtained by a two-step high-temperature synthesis. A cold-pressed pellet containing a mixture of the elements Pr (99.9 %, Alpha Aesar), Mo (99.9 %, Chempur), Si (99.99 %, Chempur) and graphite (99.9 %, Chempur) in molar ratio 1:2:2:1 was arc-melted under argon atmosphere. Due to the sensitivity of the bulk material against air and moisture all handling was done in a glove box. The sample was then annealed at 900 °C for 10 days in an evacuated and sealed silica tube and finally quenched in water. The sample contains traces (<2 %) of the second phase Mo₂C.

Experimental details

The single crystal has been mounted in an argon-filled and sealed Lindemann capillary. The lattice parameters were determined from the least-squares refinements of the 2θ values of 14 reflections (Cu $K_{\alpha 1}$ radiation, $\lambda = 1.54056$ Å) in the range $10^{\circ} < 2\theta < 85^{\circ}$ using LaB₆ powder SRM660a (a = 4.15692 Å) as an internal standard.

Discussion

The title compound crystallizes in the CeCr₂Si₂C structure type [1,2]. The Pr and Mo atoms form an 8-connected network with a space-filling packing of distorted octahedra and cuboctahedra (c/a = 1.284) with packing ratio of 1:1. The arrangement of polyhedra is similar to that in a tetragonal perovskite where the oxygen atoms are located at the vertices. However, in this case the polyhedra are much more stretched. In the metal substructure square layers of Pr atoms (d(Pr-Pr) = 4.2139(3) Å) alternate along [001] with square layers of Mo atoms (d(Mo-Mo)) =2.9797(2) A). The Mo layers are shifted relatively by $\frac{1}{2}a_1$ compared to the Pr layers. The Mo atoms have 4 Mo at 2.9797(1) Å and 4 Pr atoms as nearest metal neighbors while all Pr atoms are adjacent to 8 Mo atoms with d(Mo-Pr) = 3.4285(2) Å. Monoatomic carbon species occupy the octahedral sites, Mo₄Pr₂, of the polyhedra packing. The stretched cuboctahedra, Mo₄Pr₄Mo₄, are occupied by Si2 dimers, which are aligned parallel to the fourfold axis. The interatomic distance d(Si-Si) in the dimer is 2.393(4) Å, somewhat greater than the single bond distance of 2.352 Å in elemental silicon. The Mo atoms are surrounded octahedrally by 2 C atoms at 2.1070(1) Å) and by 4 Si atoms at 2.591(1) A. The eight faces of this octahedron are capped by four Pr and four Mo. The Pr atoms are surrounded linearly by 2 C at 2.7046(2) Å and in a tetragonal prismatic arrangement by 8 Si atoms at 3.2110(7) Å.

Magnetic susceptibility measurements in the temperature range 100 K – 400 K show Curie-Weiss type paramagnetism with an effective moment of 3.6 μ_B per Pr atom consistent with a $4f^2$ configuration, i.e., Pr^{3+} ion ($\mu_{free} = 3.578 \mu_B$).

Table 1. Data collection and handling.

Crystal: metallic dark gray plate, size $0.01 \times 0.02 \times 0.04$ mm Wavelength: Mo K_{α} radiation (0.7107 Å) 192.93 cm Diffractometer, scan mode: Rigaku AFC-7 & Mercury 70 CCD 65.52° sured, N(hkl)unique: 813, 131 Criterion for Iobs, N(hkl)gt: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 130$ N(param)refined: Programs: SHELXL-97 [3], DIAMOND [4]

^{*} Correspondence author (e-mail: kniep@cpfs.mpg.de)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	<u>x</u>	у	z	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Si	2 <i>h</i>	1/2	1/2	0.2788(3)	0.0052(4)	U_{11}	0.0064(7)	0	0	0
Mo	2 <i>f</i>	0	1/2	0	0.0038(3)	0.0049(3)	0.0064(3)	0	0	0
PT .	1 <i>b</i>	0	0	1/2	0.0059(2)	U_{11}	0.0064(3)	0	0	0
С	1 <i>a</i>	0	0	0	0.007(2)	U_{11}	0.007(4)	0	0	0

Acknowledgments. We would like to thank Dr. Yu. Prots and Mr. S. Hückmann for the collection of the diffraction data and Ms. P. Scheppan for performing the EDXS measurements.

References

- Tang, C.; Fan, S.; Zhu, M.: Structure and magnetic properties of CeCr₂Si₂C. J. Alloys Compd. 299 (2000) 1-4.
 Pohlkamp, W. M.; Jeitschko, W.: Preparation, Properties, and Crystal
- Structure of Quaternary Silicide Carbides RCr₂Si₂C (R = Y, La-Nd, Gd-Ho). Z. Naturforsch. 56b (2001) 1143-1148.
- 3. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.

 4. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information Sys-
- tem. Version 2.0e. Crystal Impact, Bonn, Germany 2001.