
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of barium selenate, BaSeO₄

A. Andara¹, M. A. Salvado¹¹, Á. Fernández-González¹, S. García-Granda*. II and M. Prieto¹

¹ Universidad de Oviedo, Departamento de Geología, C/. Jesus Arias de Velasco, s/n, 33005 Oviedo, Spain

Received December 21, 2004, accepted and available on-line January 26, 2005; CSD no. 409810

Abstract

BaO₄Se, orthorhombic, *Pnma* (no. 62), a = 8.993(8) Å, b = 5.675(6) Å, c = 7.349(4) Å, V = 375.1 Å³, Z = 4, $R_{\rm gt}(F) = 0.042$, $wR_{\rm ref}(F^2) = 0.116$, T = 293 K.

Source of material

Crystallization of BaSeO₄ single crystals was carried out in a double-diffusion system where parent aqueous solutions of two reagents are separated by a column of silica hydrogel. Crystal growth in gels is in fact solution growth, although nucleation and growth conditions are quite different from those in conventional solution growth methods. The gel is a porous medium that suppresses convection and advection, only allowing diffusion of reacting ions, which eventually meet in the gel column where precipitation occurs. This method has been used extensively as a way of growing crystals of sparingly soluble salts from aqueous solutions [1]. In the present experiments, the two parent solutions (0.5 M BaCl₂ and 0.5 M Na₂SeO₄) were separated by a 28 cm column of silica hydrogel in a U-shaped tube. The gel was prepared by acidification of a sodium silicate solution with 1 M HCl to the

* Correspondence author (e-mail: sgg@fq.uniovi.es)

desired pH of 5.5. The acidified solution was poured into the U-tube, where it polymerized to form a solid gel. In all the aqueous solutions reagent grade chemicals (Merck) were used. During the experiment the temperature was maintained to 25.0 ± 0.1 °C.

Experimental details

The high main residual electron density, ca. 4 e Å⁻³, located near Ba and the odd thermal parameters for O1 and O2 reflect the low quality of the only available barium selenate crystals.

Discussion

Selenate is the predominant form of Se in soils and water. Selenate and sulfate ions have similar chemical properties and structures and, when both are present, compete in many processes such are sorption on mineral surfaces, absorption by plants and incorporation into plant and animal tissues [2-4]. Because of selenate's toxicity and its mobility the relationship between selenate and sulfates in soils has been the subject of attention by researchers, mainly in the context of agricultural sciences [5,6]. However, the relationship between selenate and common sulfates mineral crystal structures are not always clear.

The crystal structure studies of BaSeO4 in the literature indicate that is isomorphous with barite, the corresponding sulfate [7]. The sulfate and selenate anions are both tetrahedral and even though the selenate anion is larger, the structures of many selenates are isomorphous with those of the corresponding sulfates [8,9]. These studies are limited to the determination of the cell parameters and space group, but the determination and refinement of the structure of BaSeO₄ have not been completed until now. BaSeO₄ crystallizes orthorhombically and its structure is isomorphous with barite (β -BaSO₄). The structure consists of isolated SeO₄ tetrahedra joined by barium atoms coordinated to twelve oxygen atoms forming irregular BaO₁₂ polyhedra. The structure is easier to visualize by considering the six closest oxygen atoms to each barium. These atoms form chains of distorted BaO₆ octahedra parallel the a-axis, in the direction that those are linked by SeO₄ tetrahedra.

Table 1. Data collection and handling.

Crystal: colorless, prismatic, size $0.11 \times 0.14 \times 0.14$ mm Wavelength: Mo K_{α} radiation (0.71073 Å) 201.44 cm Diffractometer, scan mode: Nonius CAD-4, ω/2θ 63.9° N(hkl)measured, N(hkl)unique: 705, 705 Criterion for Iobs, N(hkl)gt. $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 651$ N(param)refined: Programs: SHELXL-97 [10], ATOMS [11]

Universidad de Oviedo, Departamento de Química Física y Analítica, C/. Julián Clavería 8, 33006 Oviedo, Spain

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	х	у	z	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ba	4 <i>c</i>	0.18200(5)	1/4	0.15865(7)	0.0062(3)	0.0185(3)	0.0100(3)	0	0.0000(1)	0
Se	4 <i>c</i>	0.06357(8)	1/4	0.6850(1)	0.0067(4)	0.0122(4)	0.0071(4)	0	-0.0004(2)	0
O(1)	4 <i>c</i>	0.8995(8)	1/4	0.594(1)	0.017(3)	0.045(5)	0.035(4)	0	-0.023(3)	0
0(2)	4 <i>c</i>	0.1984(7)	1/4	0.5369(9)	0.017(3)	0.033(4)	0.009(3)	0	0.011(2)	0
O(3)	8 <i>d</i>	0.0797(5)	0.0172(8)	0.8154(6)	0.018(2)	0.013(2)	0.015(2)	0.001(2)	0.003(1)	0.004(2)

Acknowledgments. The authors thank the spanish MCyT (grant no. BQU2003-05093) and the Consejeria de Educación y Cultura del Principado de Asturias for the financiation (project no. PR-01-GE-4). Cooperation between the authors was partially supported by the agreement ULA-CIED-PDVSA between the University of Los Andes and Petróleos de Venezuela S. A.

References

- Henich, H. K.: Crystals in gels and Liesengangs rings. Cambridge University Press, Cambridge 1988.
- Wu, C. H.; Kuo, C. Y.; Lin, C. F.; Lo, S. L.: Modeling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich-type multi-component isotherm. Chemosphere 47 (2002) 283-292.
- Hopper, J. L.; Parker, D. R.: Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210 (1999) 199-207.
- Bell, P. F.; Parker, D. R.; Page, A. L.: Contrasting selenate-sulfate interactions in selenium-accumulating and nonaccumulating plant species. Soil Sci. Soc. Am. J. 56 (1992) 1818-1824.

- Barak, P.; Goldman, I. L.: Antagonistic Relationship between Selenate and Sulfate Uptake in Onion (Allium cepa): Implications for the Production of Organosulfur and Organoselenium Compounds in Plants. J. Agric. Food Chem. 45 (1997) 1290-1294.
- Kopsell, D. A.; Randle, W. M.: Selenate concentration affects selenium and sulfur uptake and accumulation by "Granex 33" onions. J. Am. Soc. Hort. Sci. 122 (1997) 721-726.
- Pistorius, C. W.; Pistorius, M. C.: Lattice constants and thermal-expansion properties of the chromates and selenates of lead, strontium, and barium. Z. Kristallogr. 117 (1962) 259-271.
- Kalman, A.; Stephens, J. S.; Cruickshank, D. W. J.: Crystal structure of potassium selenate. Acta Crystallogr. B26 (1970) 1451-1454.
- Krueger, R. R.; Abriel, W.: Growth and structure refinement of calcium selenate dihydrate. Acta Crystallogr. C47 (1991) 1958-1959.
- Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.
- Dowty, E.: ATOMS for Windows and Macintosh. Version 5.0.6. Shape Software, Kingsport, Tennessee, USA 1999.