
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of lead chloride thiocyanate, PbCl(SCN)

A. Gacemi¹, D. Benbertal¹, I. Gautier-Luneau¹¹ and A. Mosset*, II

Université de Laghouat, Laboratoire de Sciences Fondamentales, BP 37G, 03000 Laghouat, Algeria

Received May 23, 2005, accepted and available on-line July 11, 2005; CSD no. 409835

Abstract

CCINPbS, orthorhombic, *Pnma* (no. 62), a = 10.166(1) Å, b = 4.255(1) Å, c = 9.589(1) Å, V = 414.8 Å³, Z = 4, $R_{\rm gt}(F) = 0.023$, $wR_{\rm ref}(F^2) = 0.067$, T = 293 K.

Source of material

PbCl(SCN) was prepared from PbCl₂ and KSCN: 0.5 mmol of PbCl₂ were dissolved in 100 mL of water with the stoichiometric amount of KSCN. The mixture was refluxed during one hour and the resulting clear solution was slowly evaporated at room temperature, yielding millimeter sized, transparent needles of PbCl(SCN).

Discussion

The lead atom is coordinated to three sulfur atoms and two nitrogen atoms from five thiocyanate groups (figure, top). The metal environment is completed by three chlorine atoms. This coordination scheme can be described as a bicapped trigonal prism, the capping atoms being a sulfur atom at 3.149 Å and a chlorine atom at 2.922 Å. The position of the potential third cap is occupied by a chlorine atom, but the Pb—Cl distance, 3.72 Å, is too long to be considered. This environment is very similar to the one observed in BaCl(SCN) where the cation is located at the centre of a tricapped trigonal prism [1]. Among lead compounds, the present environment is not unusual: a mono- or a bicapped trigonal prismatic arrangement is observed in several chlorides or bromides as NH4Pb2Cl5, NH4Pb2Br5 or [Co(NH3)6](Pb4Cl11) [2-4]. This shows that the lone pair effect is very weak in the chemistry of Pb(II) compounds, even with electronegative ligands. The N atom is bridging two Pb atoms along the b axis and the S atom is μ_3 coordinated towards Pb. SCN is a highly versatile ambidentate ligand with fifteen modes of coordination: two terminal modes and thirteen multidentate bridging modes, ranging from bi- to hexadentate [5]. The present pentadentate mode (Va in ref [5]) is rather rare, but has already been observed in BaCl(SCN) and Na₄Mg(SCN)₆ [1]. The chlorine atoms are μ_3 -coordinated under forming tetrahedra. Lead polyhedra are edge-connected through two chlorine bridges, leading to a Pb—Pb distance equal to 4.661 Å (figure, bottom). They are also face-connected, along the b axis, through three bridges (μ_2 -N, μ_2 -S and μ_2 -Cl) with a Pb—Pb distance equal to the b parameter. These connections result in the formation of double chains, extending along the b axis and centred on the centres of symmetry. Finally, the 3D crystal structure of PbCl(SCN) is designed by linking these chains through the bridging thiocyanate groups.

Table 1. Data collection and handling.

Crystal: colorless needle, size $0.06 \times 0.16 \times 0.5$ mm Wavelength: Ag K_{α} radiation (0.56085 Å) 226.89 cm Diffractometer, scan mode: Nonius KappaCCD, ω/φ $2\theta_{\text{max}}$: 42.78° N(hkl)m sured, N(hkl)unique: 2518, 544 Criterion for Iobs, N(hkl)gt: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 468$ N(param)refined: Programs: SIR92 [6], SHELXS-97 [7], SHELXL-97 [8], WinGX [9]

^{II} Université Joseph Fourier, Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble, France

^{*} Correspondence author (e-mail: alain.mosset@grenoble.cnrs.fr)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	U ₁₃	<i>U</i> 23
Pb	4 <i>c</i>	0.18928(3)	3/4	0.08053(3)	0.0226(3)	0.0210(3)	0.0261(2)	0	-0.0016(1)	0
Cl	4 <i>c</i>	-0.0972(2)	3/4	0.1044(2)	0.017(1)	0.016(1)	0.0221(9)	0	-0.0014(7)	0
S	4 <i>c</i>	0.1370(2)	1/4	0.3087(2)	0.015(1)	0.020(1)	0.0176(8)	0	0.0004(8)	0
С	4 <i>c</i>	-0.0173(9)	1/4	0.3600(8)	0.021(4)	0.013(4)	0.017(3)	0	0.001(3)	0
N	4 <i>c</i>	-0.1260(8)	1/4	0.3961(8)	0.018(4)	0.032(5)	0.025(3)	0	-0.003(3)	0

Acknowledgments. Part of this work and scientific stays for two of us (DB and AG) was funded by the Comité Mixte d' Evaluation et de Prospective de coopération interuniversitaire franco-algérienne (CMEP, project no. 04 MDU 618).

References

- Wickleder, C.; Larsen, P.: BaClSCN und Na₄Mg(SCN)₆, zwei neue wasserfreie Thiocyanate der Erdalkalimetalle. Z. Anorg. Allg. Chem. 627 (2001) 1279-1282.
- Ras, F.; Idjo, D. J. W.; Verschoor, G. C.: Ammonium dilead chloride. Acta Crystallogr. B33 (1977) 259-265.
- Powell, H. M.; Tasker, H. S.: Crystal structure of Ammonium dilead bromide. J. Chem. Soc. (1937) 119-124.
- Mauersberger, P.; Haupt, H. J.; Huber, F.: Crystal structure of [Co(NH₃)₆] [Pb₄Cl₁₁], and relationship with the chlorolead structural moieties in NH₄[Pb₂Cl₅] and PbCl₂. Acta Crystallogr. B35 (1979) 295-302.
- Zhang, H.; Wang, X.; Zhang, K.; Teo, B. K.: Molecular and crystal engineering of a new class of inorganic cadmium thiocyanate polymers with host guest complexes as organic spacers, controllers and templates. Coord. Chem. Rev. 183 (1999) 157-195.
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.: Completion and refinement of crystal structures with SIR92. J. Appl. Crystallogr. 26 (1993) 343-350.
- Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
- Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.
- Farrugia, L. J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32 (1999) 837-838.