
Crystal structure of trilanthanum monosilver monosilicon heptasulfide, La₃AgSiS₇

L.-B. Wu* and F.-Q. Huang

Chinese Academy of Sciences, Shanghai Institute of Ceramics, 1295 Dingxi Road, Shanghai 200050, P. R. China

Received August 1, 2005, accepted and available on-line August 29, 2005; CSD no. 409845

Abstract

AgLa₃S₇Si, hexagonal, $P6_3$ (no. 173), a = 10.421(2) Å, c = 5.785(3) Å, V = 544.1 Å³, Z = 2, $R_{gt}(F) = 0.042$, $wR_{ref}(F^2) = 0.099$, T = 293 K.

Source of material

The title compound was obtained by the reaction of stoichiometric amount of elemental commercial products (La 99.9 %, Ag 99.5 %, Si 99.99 %, and S 99.95%) in a KBr flux. The mixture was loaded under argon, sealed under a 10^{-2} Pa vacuum in a silica tube. The tube was placed and heated in a computer-controlled furnace to 1173 K, kept at 1123 K for 72 h, cooled at a rate of 0.05 K/min to 723 K, and finally cooled to room temperature. The reaction mixture was washed with distilled water and dried with acetone. The reaction products comprised hexagonal pale greenish-yellow needles, which were modestly stable in air.

Discussion

Although La₃AgSiS₇ crystallizes in the hexagonal system and also belongs to the extensively studied compound family of $Ln_3MM'Q_7$, where M is main-group metal or first-row transition-metal and M' is tetrahedrally coordinated main-group metal, some difference arises owing to coordination number of silver atom in 2a site which decreases compared with usual octahedrally coordinated main-group metals (figure, top). For instance, Ni or Mg (Co/Mg/Mn or Fe etc.) in the corresponding compounds (La₆MSi₂S₁₄, M = Ni, Co [1]; La₆Mg M'_2 S₁₄, M' = Ge, Si [2]; La₃MAlS₇ and La₃MFeS₇, M = Mg, Mn, Fe, Co, Ni, or Zn [3]) are coordinated with six sulfur atoms and form one-dimensional chains of face-sharing MS₆ octahedra along c axis.

In the crystal structure of La₃AgSiS₇, the silver atom is only bonded to three S1 atoms with Ag—S distances of 2.441(3) Å. The Ag atoms are strongly anisotropic, the value of U_{33} is much larger than that of U_{11} and U_{22} . This might be explained by the coordination of the atoms. Each Ag in 2a site is three-coordinated and located in the center of the triangular sulfur plane, so stood unconstrained perpendicular to the plane. The silicon atom forms a slightly distorted tetrahedron with three S2 parallel to the a,b plane and one S3 on the c axis, leaving one shorter Si—S3 bond of 2.086(9) Å and other three Si—S2 bonds of 2.138(5) Å (figure, bottom). The lanthanum atom is eight-coordinated to four S1 atoms, three S2 and one S3 atoms, which strongly resembles its analogues like La₃AgGeS₇ [4], La₃AgSiSe₇ [5], La₃CuGeS₇, La₃CuGeSe₇ [6] and other lanthanide chalcogenide compounds (Dy₃CuGeSe₇ [7], Y₃NaSiS₇ [8]). The La—S distances of the bicapped trigonal prism LaS₈ polyhedron range from 2.905(4) Å to 3.120(3) Å, well comparable to 2.910 Å to 3.121 Å (no errors cited) in La₃AgGeS₇ [4]. In brief, three structural motifs make up of the title compound, i.e. LaS₈ bicapped trigonal prisms, planar AgS₃ triangles, and SiS₄ tetrahedra. The LaS₈ prisms form corner-sharing chains along c axis, whereas the isolated AgS₃ triangles are staggered on 63 axis with a distance of 2.892(4) Å, and distorted AgS4 tetrahedra packed along the threefold axis (figure, bottom).

Table 1. Data collection and handling.

pale greenish-yellow needle, Crystal: size $0.20 \times 0.22 \times 0.68$ mm Wavelength: Mo K_{α} radiation (0.71073 Å) 147.02 cm Diffractometer, scan mode: Bruker SMART CCD, ω/φ $2\theta_{\max}$: 49.94° 3867, 648 red, N(hkl)unique: $N(hkl)_n$ Criterion for Iobs, N(hkl)gt: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 642$ N(param)refined: SHELXTL [9] Program:

^{*} Correspondence author (e-mail: wlb@mail.sic.ac.cn)

Table 2. Atomic coordinates and displacement parameters (in \mathbb{A}^2).

Atom	Site	<u>x</u>	у	z	<i>U</i> ₁₁		U ₃₃	<i>U</i> ₁₂	U ₁₃	U ₂₃
La(1)	6 <i>c</i>	0.12133(7)	0.35947(7)	0.1175(2)	0.0128(4)	0.0118(4)	0.0166(5)	0.0062(3)	0.0007(4)	0.0006(4)
Ag	2 <i>a</i>	0	0	0.0682(5)	0.0171(6)	U_{11}	0.066(2)	1/2U11	0	0
S(1)	6 <i>c</i>	0.2644(3)	0.1764(3)	0.1083(8)	0.018(2)	0.014(2)	0.020(2)	0.009(1)	0.002(2)	0.002(2)
S(2)	6 <i>c</i>	0.5262(4)	0.1181(4)	0.3447(7)	0.017(2)	0.012(2)	0.022(2)	0.006(2)	-0.001(2)	0.000(1)
S(3)	2 <i>b</i>	½	2/3	0.341(1)	0.020(2)	U_{11}	0.018(4)	1/2U11	0	0
Si	2 <i>b</i>	%	2/3	0.702(1)	0.021(2)	v_{11}	0.014(4)	1/2U11	0	0

Acknowledgment. The authors are dedicatedly grateful to Prof. C. Zheng from the Department of Chemistry and Riochemistry of the Northern Illinois University for data collection.

References

- Jin, Z. S.; Li, Z. T.; Du, Y. R.: Synthesis and crystal structure of La₆NiSi₂S₁₄ and La₆CoSi₂S₁₄. Chinese J. Appl. Chem. 2 (1985) 42-46.
- Gitzendanner, R. L.; Spencer, C. M.; Disalvo, F. J.; Pell, M. A.; Ibers, J. A.: Synthesis and structure of a new quaternary rare earth sulfide, La6MgGe2S14 and the related compound La6MgSi2S14. J. Solid State Chem. 131 (1996) 399-404.
- Nanjundaswamy, K. S.; Gopalakprishnan, J.: Preparation, structure, and magnetic properties of isostructural La₃MAlS₇ and La₃MFeS₇ (M = Mg, Mn, Fe, Co, Ni, or Zn). J. Solid State Chem. 49 (1983) 51-58.
- Hwu, S. J.; Nucher, C. K.; Carpenter, J. D.; Taylor, S. P.: A solid state diastereomer, AgLa₃GeS₇. Inorg. Chem. 34 (1995) 1979-1980.
- Lin, S. H.; Mao, J. G.; Guo, G. C.; Huang, J. S.: Synthesis and crystal structure of a new quaternary compound: La₃AgSe₇Si. J. Alloys Compd. 252 (1997) L8-L11.
- Poduska, K. M.; DiSalvo, F. J.; Min, K.; Halasyamani, P. S.: Structure determination of La₃CuGeS₇ and La₃CuGeSe₇. J. Alloys Compd. 335 (2002) L5-L9.
- Huang, F. Q.; Ibers, J. A.: Dy₃CuGeSe₇. Acta Crystallogr. C55 (1999) 1210-1212.
- Hartenbach, I.; Schleid, T.: NaY₃S₃[SiS₄], a sodium-containing yttrium sulfide thiosilicate with channel structure. J. Solid State Chem. 171 (2003) 382,386
- Sheldrick, G. M.: SHELXTL. Structure Determination Software Suite. Version 6.10. Bruker AXS, Madison, Wisconsin, USA 1997.