
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of digadolinium tricarbomolybdate(III), Gd₂[Mo₂C₃]

E. Dashjav, W. Schnelle, G. Kreiner and R. Kniep*

Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany

Received March 22, 2005, accepted and available on-line April 13, 2005; CSD no. 409822

Abstract C₃Gd₂Mo₂, monoclinic, C₁₂/m₁ (no. 12), a = 11.870(2) Å, b = 3.3575(6) Å, c = 5.756(1) Å, $\beta = 113.11(1)^{\circ}$, V = 211.0 Å³, Z = 2, $R_{gf}(F) = 0.038$, $wR_{ref}(F^{*}) = 0.090$, T = 293 K.

Source of material

Dark gray, platy single crystals of the title compound have been obtained by a two-step high temperature synthesis. Cold-pressed pellets of a mixture of the elements in stoichiometric amounts (Gd, 99.9 %; Mo, 99.9 %; graphite C, 99.9 %) were arc-melted under argon atmosphere and subsequently annealed at 1723 K for 72 h in a tube furnace (Lora 1800, HTM-Reetz GmbH) with permanent flushing of the heater room with argon. Finally, the sample was cooled down to room temperature with a rate of 150 K/h. Metallographic examination of the microstructure in combination with EDXS (1:0.93 Mo/Gd) and powder X-ray diffraction (Huber

G670, with Ge monochromator, $CuK\alpha_1$ radiation) reveal the title compound as the majority phase together with traces of Mo_2C (< 2%). Since the bulk material is sensitive against air and moisture all handling was done in a glove box and the single crystal was mounted in an argon-filled Lindemann capillary.

Experimental details

The cell parameters were determined from the least-squares refinement of the 2θ values of 24 reflections in the range $10^{\circ} < 2\theta < 85^{\circ}$ using LaB₆ powder SRM 660a as an internal standard.

Discussion

Recently, we have introduced criteria for carbometalates by extending the concept of complex anions from fluoro-, oxo-, nitrido- to carbometalates [1]. In case of the general formula $RE_2[T_2C_3]$ with RE = rare earth metal and T = transition metal three different crystal structure types containing polyanions $[(T_2C_3)^{6-}]$ as well as RE^{3+} cations are known: $Ho_2[Cr_2C_3]$ [2], $Er_2[Mo_2C_3]$ [3] and $Pr_2[Mo_2C_3]$ [4]. The polyanions are built from distorted TC_4 -tetrahedra with the carbo-ligands covalently bonded to the transition metals of low oxidation state.

The title compound crystallizes in the Er₂[Mo₂C₃] structure type [3] and consists of stacked $\frac{2}{\infty}$ [(Mo₂C₃)⁶⁻] layers with Gd³⁺ cations in between (figure, top). The polyanion forms infinite chains via edge (C1···C1) sharing of distorted MoC4 tetrahedra, which are vertex-connected via the remaining two apices (C2) to form 2D layers with interatomic distances: $d(Mo-C1) = 1 \times 2.093(9) \text{ Å}$, $1 \times 2.156(1)$ Å and $d(Mo-C2) = 2 \times 2.065(1)$ Å. The metal atoms form a distorted bcc arrangement with d(Mo-Mo) = 2.862(2) Å, d(Mo-Gd) = 3.198(1) Å, 3.213(1) Å, 3.380(1) Å and <math>d(Gd-Gd) =3.358(1) Å. The carbon atoms, which occupy a fraction of the octahedral voids, are connected to three (C1) and two (C2) Mo atoms, respectively (figure, bottom). The coordination polyhedron around Gd represents a GdC5 square pyramid with Gd being slightly shifted out of the square plane. The compound is a Curie-type paramagnet with an effective moment of 8.02 μ_B per Gd atom in agreement with theoretical value of 7.94 μ_B for Gd³⁺ ion. Below 41.5 K the magnetic moments of Gd order antiferromagnetically. Gd₂[Mo₂C₃] is a bad metallic conductor with a room temperature resistivity of order 1 m Ω cm.

Table 1. Data collection and handling.

gray, plate-like, size $0.05 \times 0.06 \times 0.15$ mm Mo K_{α} radiation (0.71073 Å) 366.25 cm ⁻¹
Mo K_{α} radiation (0.71073 Å)
366.25 cm ⁻¹
Rigaku AFC7 & Mercury70 CCD, ω/φ
59.62°
791, 307
$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 300$
23
SHELXL-97 [5], DIAMOND [6]

^{*} Correspondence author (e-mail: kniep@cpfs.mpg.de)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	х	<u>y</u>	z	<i>U</i> ₁₁	U_{22}	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}
Gd	4i	0.39147(6)	0	0.1806(1)	0.0179(5)	0.0150(4)	0.0179(4)	0	0.0052(3)	0
Mo	4i	0.1577(1)	0	0.3259(2)	0.0150(7)	0.0138(5)	0.0163(6)	0	0.0040(5)	0
C(1)	4i	0.251(1)	0	0.732(2)	0.010(6)	0.024(7)	0.013(6)	0	0.000(5)	0
C(2)	2 <i>a</i>	0	0	0	0.03(1)	0.015(8)	0.03(1)	0	0.016(9)	0

Acknowledgments. The authors would like to thank Dr. U. Burkhardt for the metallographic examination, K. Schulze for the EDXS, A. Völzke for the chemical analyses, S. Hückmann and Yu. Prots for collecting the X-ray diffraction data. We are also indebted to Dr. R. Niewa, whose comments have helped us substantially.

References

- Dashjav, E.; Kreiner, G.; Schnelle, W.; Wagner, F. R.; Kniep, R.: Carbometallate: Komplexe Anionenverbände ²/_∞[(MoC_{4/2})⁶⁻] in der Kristallstruktur von Pr^{III}/₂[Mo^{II}C₂]. Z. Anorg. Allg. Chem. 630 (2004) 689-696.
- 2. Jeitschko, W.; Behrens, R. K.: Ternary carbides with Ho₂Cr₂C₃ and UMoC2. Z. Metallk. 70 (1986) 788-793.
- 3. Reehuis, R.; Gerdes, M.; Jeitschko, W.; Ouladdiaf, B.; Stüsser, N.: Crystal and magnetic structures of the ternary carbides $Ho_2Mo_2C_3$ and $Er_2Mo_2C_3$. J. Magn. Magn. Mater. 195 (1999) 657-666.
- Dashjav, E.; Kreiner, G.; Schnelle, W.; Wagner, F. R.; Kniep, R.: Carbomolybdate(III): Zur Kenntnis von Pr₂[Mo₂C₃] sowie Strukturbeziehungen zu Er₂[Mo₂C₃], Z. Anorg. Allg. Chem. 630 (2004) 2277-
- 5. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal
- Structures. University of Göttingen, Germany 1997.

 6. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 2.0f. Crystal Impact GbR, Bonn, Germany 1998.