
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of cesium lead tetrathiophosphate, CsPbPS₄

I. Belkyal^I, M. El Azhari*, Y.-D. Wu^{II}, W. Bensch^{II}, K.-F. Hesse^{III} and W. Depmeier^{III}

Universität Kiel, Institut für Anorganische Chemie, Olshausenstr. 40, 24098 Kiel, Germany

Received March 18, 2005, accepted and available on-line April 26, 2005; CSD no. 409821

Abstract CsPPbS₄, orthorhombic, *Pnma* (no. 62), a = 18.185(1) Å, b = 6.8085(5) Å, c = 6.3518(5) Å, V = 786.4 Å³, Z = 4, $R_{\rm gt}(F) = 0.039$, $wR_{\rm reft}(F^2) = 0.101$, T = 293 K.

Source of material

Cs₂S₃ was prepared from a stoichiometric mixture of the elements (Cs - 99.5%, Strem; S - 99.99%, Heraeus) in liquid ammonia under argon atmosphere. CsPbPS4 was prepared by the reaction of Cs₂S₃, Pb (99.9%, Aldrich), P₂S₅ (99.99%, Alfa), and S in an 1:1:1:6 molar ratio. The reaction mixture was thoroughly combined in a nitrogen-filled glove-box and loaded into a glass tube (Duran), which was evacuated (1×10^{-3} mbar) and flame sealed. The ampoule was placed in a computer-controlled furnace and heated to 773 K, then kept at this temperature for 6 days, and afterwards cooled to 373 K at the rate of 2 K/h, then turned off the furnace. To remove unreacted $Cs_xP_yS_z$ the solidified melt was washed with dimethylformamide and acetone. The product consisted of transparent yellow crystals which are stable in air and moisture. A semiquantitative EDX analysis indicated the presence of all four elements (Cs, Pb, P and S) in an approximate atomic ratio of 1:1:1:4.

Discussion

In the course of our ongoing work on alkali metal thiophosphates we have prepared CsPbPS4. The title compound has a structure similar to that of the previously reported KPbPS4 [1] and is closely related to those of the other alkali metal ortho-chalco-phosphates studied to date, namely KEuPS4 [2], KEuPSe4 [3,4], and CsPbPSe4 [5].

The structure of CsPbPS₄ consists of two-dimensional [PbPS₄] $_n^{n-}$ layers perpendicular to [100]. These layers are separated by Cs⁺ cations (figure, top). Similar to KPbPS4, each layer is made up of trigonal [PbS₆] prisms and tetrahedral [PS₄] groups (figure, bottom). Pb is surrounded by six S atoms in an irregular trigonal prismatic arrangement. Two adjacent prisms share an edge of rectangular faces to form a one-dimensional [PbS₆] chain. The apical edges of the prisms of these chains point alternately up and down along [010]. These parallel zigzag chains are joined by [PS₄] tetrahedra along [001] by sharing edges with the rectangles of the trigonal prisms to form two-dimensional [PbPS₄] $_n^{n-1}$ layers. In this way, each [PbS₆] trigonal prism is connected to four [PS₄] tetrahedra. With two of the tetrahedra it shares a common edge while with two others it is only corner-linked (figure, bottom). The Pb—S distances found in CsPbPS₄ range from 2.910(3) Å to 3.208(2) A and compare very well with those reported for KPbPS₄ [1]. The [PbPS₄]_nⁿ- layers are separated by Cs⁺ ions which have an irregular sevenfold coordination and the Cs—S distances range from 3.469(3) Å to 4.012(3) Å. This environment of Cs atom has already been observed in CsPbPSe4 [5]. The size of the alkali metal cation is small compared with the distance between adjacent [PbPS4]_nⁿ layers. This is probably the reason for the large and strongly anisotropic displacement parameters. The average P—S distance within the PS₄ unit (2.045(3) Å) is in good agreement with the P-S distances found in related phases.

Universite Cadi Ayyad, Faculté des Sciences et Techniques, Département Sciences Chimiques, B.P. 549, Marrakech, Morocco

Universität Kiel, Institut für Geowissenschaften/Kristallographie, Olshausenstr. 40, 24098 Kiel, Germany

^{*} Correspondence author (e-mail: emibl@menara.ma)

Table 1. Data collection and handling.

Crystal:

transparent yellow prism, size $0.07 \times 0.10 \times 0.12$ mm **Mo** K_{α} radiation (0.71073 Å) 271.69 cm⁻¹

Wavelength:

Diffractometer, scan mode:

Stoe IPDS I, φ

 $2\theta_{\max}$:

60.7°

N(hkl)mea ared, N(hkl) Criterion for Iobs, N(hkl)gt. 7958, 1230 $I_{\rm obs} > 2 \, \sigma(I_{\rm obs}), \, 1035$

N(param)refined:

Programs:

SHELXS-97 [6], SHELXL-97 [7]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у		<i>U</i> 11	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Pb	4 <i>c</i>	0.01524(3)	1/4	0.70901(7)	0.0218(3)	0.0659(4)	0.0260(3)	0	0.0001(2)	0
P	4 <i>c</i>	0.0955(1)	1/4	0.2180(4)	0.013(1)	0.020(1)	0.023(1)	0	0.0015(8)	0
S(1)	4 <i>c</i>	0.1539(1)	1/4	0.9462(4)	0.015(1)	0.029(1)	0.028(1)	0	0.0055(8)	0
S(2)	4 <i>c</i>	0.9840(2)	1/4	0.1584(5)	0.011(1)	0.074(2)	0.029(1)	0	0.0023(9)	0
S(3)	8 <i>d</i>	0.1184(1)	0.0058(3)	0.3940(3)	0.030(1)	0.0208(8)	0.0329(9)	-0.0018(6)	-0.0022(7)	0.0053(7)
Cs	4 <i>c</i>	0.29577(4)	1/4	0.4300(2)	0.0210(4)	0.0299(4)	0.0869(7)	0	-0.0138(4)	0

References

- 1. Belkyal, I.; El Azhari, M.; Wu, Y.; Bensch, W.; Hesse, K.-F.; Depmeier, W.: Synthesis and crystal structure of the new quaternary lead thiophosphate KPbPS4. Solid State Sci., submitted.
- 2. Evenson IV, C. R.; Dorhout, P. K.: Thiophosphate phase diagrams developed in conjunction with the syntheses of the new compounds KLaP2S6, $K_2La(P_2S_6)_{1/2}(PS_4)$, $K_4La_{0.67}(PS_4)_2$, $K_{9-x}La_{1+x/3}(PS_4)_4$ (x = 0.5), K₄Eu(PS₄)₂ and KEuPS₄. Inorg. Chem. **40** (2001) 2884-2891.

 3. Aitken, J. A.; Chondroudis, K.; Young Jr., V. G.; Kanatzidis, M. G.:
- LiEuPS4 and KEuPS4: Novel selenophosphates with the tetrahedral [PSe₄]³⁻ building block. Inorg. Chem. **39** (2000) 1525-1533.
- 4. Evenson IV, C. R.; Dorhout, P. K.: Selenophosphate phase diagrams developed in conjunction with the syntheses of the new compounds K2La(P2Se6)1/2(PSe4), K3La(PSe4)2, K4La0.67(PSe4)2, K9-xLa1+x/3(PSe4)4 (x = 0.5) and KEuPSe₄. Inorg. Chem. 40 (2001) 2875-2883.
- Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G.: Chemistry in molten alkali metal polyselenophosphate fluxes. Influence of flux composition on dimensionality. Layers and chains in APbPSe₄, A_4 Pb(PSe₄)₂ (A = Rb, Cs) and K₄Eu(PSe₄)₂. Inorg. Chem. 35 (1996) 840-844.
- Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
- Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.