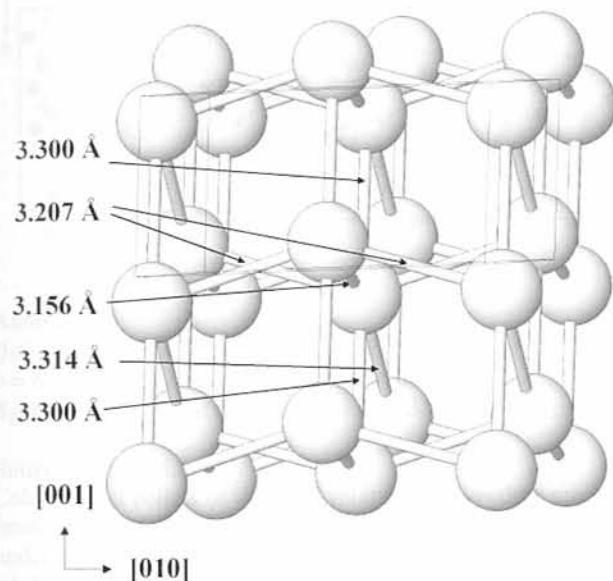


Refinement of the crystal structure of Bi-II, at 2.54 GPa


L. G. Akselrud^{I,II}, M. Hanfland^{III} and U. Schwarz^{*,II}

^I Lviv State University, Kyryla and Mefodija St. 6, 79005 Lviv, Ukraine

^{II} Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, D-01187 Dresden, Germany

^{III} ESRF, BP 220, F-38043 Grenoble, France

Received November 19, accepted and available on-line November 24, 2003, CSD-No. 409752

Abstract

Bi, monoclinic, C12/m1 (No. 12), $a = 6.67256(1)$ Å, $b = 6.1108(2)$ Å, $c = 3.30013(9)$ Å, $\beta = 110.412(2)^\circ$, $V = 126.1$ Å³, $Z = 4$, $R(P) = 0.118$, $R(I) = 0.087$, $T = 295$ K, $P = 2.54$ GPa.

Source of material

Bismuth of 99.999% purity (ABCR GmbH, Germany) was used for the experiments. Polycrystalline samples were obtained by grinding of bismuth granules at ambient conditions.

Experimental details

Angle-dispersive X-ray powder diffraction experiments were performed on ID-9 at ESRF using an image plate detector. The powdered particles were placed in a gasketed diamond anvil high-pressure cell using a small sphere of ruby for pressure calibration and a 4:1 mixture of ethanol and methanol as a pressure transmitting medium.

Table 2. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Bi	4 <i>i</i>	0.2518(3)	0	0.1490(6)	0.049(1)	0.049(1)	0.069(2)	0	0.028(1)	0

Discussion

The crystal structure of the high-pressure modification Bi-II was proposed using time-of-flight neutron diffraction data [1]. Hereby, the atomic coordinates were determined only approximately: Bi in the 4*i* site with $x = 1/4$ and $z = 1/8$. The need for more detailed values for the atomic parameters in the Bi-II structure was recognized in the course of our investigations on crystal structures and chemical bonding at elevated pressures [2,3]. The re-established coordinates for the unique bismuth position in the Bi-II crystal structure (cf. Table 2) differ remarkably from the previously found values [1]. This does not change the general interpretation of the structure as a strongly distorted cubic primitive packing [4]. The level of deformation with respect to the rhombohedral phase is definitely higher as supposed previously, which can be illustrated by comparison of the shortest interatomic distances: $1 \times 3.156(3)$ Å, $2 \times 3.2073(8)$ Å, $2 \times 3.300(3)$ Å and $1 \times 3.314(3)$ Å in the present work and 1×3.145 Å, 2×3.165 Å, 2×3.300 Å and 1×3.391 Å by applying the atomic coordinates from [1]. This could explain the difficulties to simulate the Bi-I to Bi-II transformation by means of the density functional calculations [5]. With the re-determined atomic parameters, the structure of Bi-II at 2.54 GPa is more distinct from the Bi-I modification, as it could be assumed before. The Bi-II structure can be derived by distortion of the Bi-I arrangement. The according interatomic distances in the Bi-I structure at 2.2 GPa are $3 \times 3.070(3)$ Å and $3 \times 3.385(3)$ Å (own data).

Table 1. Data collection and handling.

Powder:	black, size 5–10 µm
Wavelength:	synchrotron radiation (0.41844 Å)
μ :	365.4 cm ⁻¹
Diffractometer:	MAR 3450
$2\theta_{\max}$, stepwidth:	24.8°, 0.01°
$N(\text{points})_{\text{measured}}$:	2178
$N(hkl)_{\text{measured}}$:	80
$N(\text{param})_{\text{refined}}$:	8
Programs:	WinCSD [6], ImageIntegrator [7]

* Correspondence author (e-mail: schwarz@cpfs.mpg.de)

References

1. Brugger, R. M.; Bennion, R. B.; Worlton, T. G.: The crystal structure of bismuth-II at 26 kBar. *Phys. Lett.* **24A** (1967) 714-717.
2. Schwarz, U.; Akselrud, L. G.; Rosner, H.; Ormeci, A.; Grin, Yu.: Structure and stability of the modulated phase Sb-II. *Phys. Rev. B* **67** (2003) 214101.
3. Schwarz, U.; Jepsen, O.; Syassen, K.: Electronic structure and bonding in the Cmca phases of Si and Cs. *Solid State Comm.* **113** (2000) 643-648.
4. Chen, J. H.; Iwasaki, H.; Kikegawa, T.: Crystal structure of the high pressure phases of Bi-II and Bi-III' by high energy synchrotron X-ray diffraction. *High Pressure Res.* **15** (1996) 143-158.
5. Häussermann, U.; Söderberg, K.; Norrestam, R.: Comparative study of the high-pressure behaviour of As, Sb, and Bi. *J. Am. Chem. Soc.* **124** (2002) 15359-15367.
6. Akselrud, L. G.; Grin, Yu. N.; Zavalii, P. Yu.; Pecharskii, V. K.: WinCSD - Universal program package for single crystal and/or powder structure data treatment. Windows version 10-2003.
7. Akselrud, L. G.; Schwarz, U.: ImageIntegrator: A program for treatment of image-plate powder-diffraction data. Version 10-2003. MPI CPfS, Dresden, Germany 2003.