


Crystal structure of lithium ammonium hexachlorotellurate(IV), $[Li_{0.2}(NH_4)_{0.8}]_2TeCl_6$

R. Karray^I, A. Kabadou^{*I}, M. Loukil^{I,II} and A. Ben Salah^I

^I Faculté des Sciences de Sfax, Laboratoire des Sciences des Matériaux et d'Environnement, Sfax, 3018 Tunisia

^{II} Darmstadt University of Technology, Institute for Materials Science, Petersenstraße 23, D-64287, Germany

Received October 29, 2003, accepted and available on-line November 17, CSD-No. 409743

Abstract

$Cl_6H_6.4Li_{0.4}N_{1.6}Te$, cubic, $Fm\bar{3}m$ (No. 225), $a = 10.357(2)$ Å, $V = 1111.0$ Å³, $Z = 4$, $R_{gt}(F) = 0.060$, $wR_{ref}(F^2) = 0.149$, $T = 299$ K.

Source of material

From the mixed solutions of LiCl, NH₄Cl and TeO₂ in concentrated HCl with the molar ratio 1:1:1, bright yellow crystals grew within several days using a desiccator filled with concentrated H₂SO₄ as water absorber. As for other hexachlorotellurates(IV), the crystals are very sensitive to moisture. Therefore, they were protected by paraffin oil.

Experimental details

The H atoms (by implication) would be at a 36(f) (x, x, x) sites. Diffraction experiments on the isomorphous (NH₄)₂SiF₆ [1,2] have provided information on the orientation and the thermal motion of the ammonium group, and similar models have been tested in the structural refinement of $[Li_{0.2}(NH_4)_{0.8}]_2TeCl_6$. The ammonium tetrahedron may be placed in two similar positions with its axis along [111]. But, it was hard to confirm the 36(f) (x, x, x) position for the H atoms. A model was tested with $x(H) = 0.19$ converging to $R_{gt}(F) = 0.061$. However, with the help of three-dimensional Fourier synthesis, it was found that the H atoms lie at a 96(k) site leading to a three-fold disordering.

Discussion

As expected, the salt crystallizes in the $K_2[PtCl_6]$ -type cubic face-centered antifluorite lattice (figure, top). Each Te atom is surrounded by six Cl atoms forming a regular octahedron with distances of 2.585(3) Å. The $TeCl_6$ octahedra are found to be regular despite the coexistence of two different types of chlorine bonding, with $x(Cl)$ value of 0.2504(3) which can also be calculated from the following equation [3]: $x_{\text{calc}} = (0.5 - r_{\text{Cl}}/a_0)$; where x_{calc} is the calculated chlorine site fraction. This correlation between Te—Cl distance and the unit cell parameter is derived from the fact that the Cl^- ions of each octahedron are in contact (figure, bottom) and this may determine a_0 . The calculated value of $x_{\text{calc}} = 0.2493$ is in close proximity to that measured indicating that the density of the hexachloride lattice is not influenced by the Cl^-/NH_4^+ repulsion. The presence of both Li^+ and NH_4^+ cations induce the coexistence of two types of bonds:

- Ionic bonding between cationic entities Li^+ and $[TeCl_6]^{2-}$ anionic complexes.
 - H bonding contacts N—H···Cl providing a linkage between cationic entities NH_4^+ and $[TeCl_6]^{2-}$ anionic complexes.
- Li/N atoms are twelve-fold coordinated by Cl neighbors. The average distance $d(Li—Cl)$ is 3.662(1) Å. Comparison with (NH₄)₂TeCl₆ [4] leads us to assume that the title compound crystallizes in the same structure with more extension in the cavity around Li/N atoms. This increase is deduced by the coexistence of two types of bonds. The values of Te—Cl distances are close to those observed in (NH₄)₂TeCl₆.

* Correspondence author (e-mail: Ahlemkabadou@lycos.com)

Table 1. Data collection and handling.

Crystal:	yellow cube, size 0.24 × 0.24 × 0.24 mm
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ :	40.55 cm ⁻¹
Diffractometer, scan mode:	Oxford Diffraction Xcalibur CCD, ω
$2\theta_{\max}$:	59.94°
$N(hkl)$ measured, $N(hkl)$ unique:	2243, 113
Criterion for I_{obs} , $N(hkl)$ gt:	$I_{\text{obs}} > 2\sigma(I_{\text{obs}})$, 110
$N(\text{param})$ refined:	9
Programs:	SHELXL-97 [5], DIAMOND [6]

Table 2. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	Occ.	<i>x</i>	<i>y</i>	<i>z</i>	<i>U</i> _{iso}
H(1)	96 <i>k</i>	0.267	0.240(4)	0.189(4)	<i>y</i>	0.082

Table 3. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	Occ.	<i>x</i>	<i>y</i>	<i>z</i>	<i>U</i> ₁₁	<i>U</i> ₂₂	<i>U</i> ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
Te(1)	4 <i>a</i>		1/2	0	0	0.0328(7)	<i>U</i> ₁₁	<i>U</i> ₁₁	0	0	0
Cl(2)	24 <i>e</i>		0.2504(3)	0	0	0.020(1)	0.067(1)	<i>U</i> ₂₂	0	0	0
N(1)	8 <i>c</i>	0.8(1)	1/4	1/4	1/4	0.069(8)	<i>U</i> ₁₁	<i>U</i> ₁₁	0	0	0
Li(1)	8 <i>c</i>	0.2	1/4	1/4	1/4	0.069(8)	0.069(8)	0.069(8)	0	0	0

Acknowledgment. One of us (M. Loukil) gratefully acknowledges the financial support by the Deutscher Akademischer Austausch Dienst (DAAD).

References

1. Hanic, F.: Krystallochemia komplexnych fluoridov vsebecneho zlozenia A_2MF_6 . Vypresnenie struktury $(NH_4)_2SiF_6$. Chemicke Zvesti. **20** (1966) 738-751.
2. Schlemper, E. O.; Hamilton, W. C.: Structure of cubic ammonium fluosilicate: Neutron-diffraction and neutron-inelastic-scattering studies. J. Chem. Phys. **44** (1966) 2499-2505.
3. Brill, T B.; Gerhart, R. C.; Welsh, W. A.: Crystal Structures of M_2SnCl_6 Salts. An Analysis of the 'Crystal Field Effect' in their Nuclear Quadrupole Resonance and Vibrational Spectra. J. Magn. Reson. **13** (1974) 27-37.
4. Engel, G.: Die Kristallstrukturen einiger Hexachlorokomplexsalze. Z. Kristallogr. **90** (1935) 341-373.
5. Sheldrick, G. M.: SHELXL-97. Program for refining crystal structures. University of Göttingen, Germany 1997.
6. Brandenburg, K.: Diamond (Version 2.1e). Crystal Impact GbR, Bonn, Germany 1996-2001.