
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of tricalcium tantalum trigallium disilicon oxide, Ca₃TaGa₃Si₂O₁₄

Z.-M. Wang, W.-T. Yu, D.-R. Yuan*, X.-Q. Wang, G. Xue, X.-Z. Shi, D. Xu and M.-K. Lv

Shandong University, Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Jinan, 250100, P. R. China

Received September 12, 2003, accepted and available on-line November 18, 2003; CSD-No. 409728

Abstract

Ca₃Ga₃O₁₄Si₂Ta, trigonal, *P*321 (No. 150), a = 8.1081(4) Å, c = 4.9850(4) Å, V = 283.8 Å³, Z = 1, $R_{gt}(F) = 0.025$, $wR_{ref}(F^2) = 0.064$, T = 293 K.

Source of material

Ca₃TaGa₃Si₂O₁₄ (CTGS) was prepared by solid-state reaction of a stoichiometric mixture of 99.99% CaCO₃, Ta₂O₅, SiO₂ and 98% Ga₂O₃ powders. The powders were ground, mixed for 12 h and pressed into tablets. The latter were heated at 1373 K for 6 h to decompose CaCO₃ completely and produced CTGS ceramics. The ceramic materials were put into an Ir crucible and melted by RF-heating using an atmosphere of pure nitrogen plus a small amount of oxygen in order to avoid the evaporation of gallium suboxide from the melt during growth. The crystal pulling and rotation rates were 1-3 mm/h and 15-30 rpm, respectively. When the length of the crystal was sufficient, the temperature was lowered to room temperature at a rate of 30-180 K/h. The colorless and transparent single crystals of CTGS (16-14 mm in diameter and 37 mm in length) suitable for X-ray structure analysis were obtained.

Discussion

In the structure of $Ca_3TaGa_3Si_2O_{14}$, the Ca—O bond lengths in the CaO_8 dodecahedra are 2.363(3) Å, 2.394(3) Å, 2.679(2) Å and 2.867(4) Å. Two of them are shorter and the two other are longer than the sum of the ionic radii (2.47 Å) [1]. The O–Ca–O bond an-

gles (between adjacent atoms) are in the ranges of 57.8(2)° -153.87(6)°, which are remarkably different from the typical dodecahedral angle (41.81°, 70.53°, 114.97°, 138.20°, 180°). Summing up, the bond lengths of Ca-O and bond angles of O-Ca-O, one can conclude that the CaO₈ dodecahedron is a distorted one. In the TaO6 octahedron, all Ta—O bonds have the length 1.985(3) Å, which is slightly shorter than the sum of the ionic radii (2.02 Å [1]). The bond angles of O-Ta-O (between adjacent atoms) are 167.1(2)°, 83.6(2)°, 88.3(1)° and 83.6(2)°, which is significantly different from ideal octahedron. In the GaO₄ tetrahedron, two bond lengths are 1.827(3) Å, the others are 1.856(4) Å, which are all longer than the sum of the ionic radii (1.82 Å [1]); and the bond angles of O-Ga-O (between adjacent atoms) [102.2(2)° - 127.7(2)°] deviate clearly from the tetrahedral angle. However, in the SiO₄ tetrahedron, one bond length is shorter (1.594(5) Å) and the others (1.637(4) Å) are longer than the sum of the Shannon ionic radii (1.61 Å [1]). Among the bond angles of O-Si-O (between adjacent atoms), three bond angles (114.6(1)°) are larger than the remaining (103.9(2)°), which are slightly different from the ideal value for a tetrahedron. From the above discussion, it is clear that the CaO₈, TaO₆, GaO₄ and SiO₄ polyhedra of the CTGS structure are all distorted, which leads to a high efficiency of second harmonic generation (SHG) in CTGS crystals. The distortion of polyhedra in CTGS crystal is somewhat higher than that of the Ca₃NbGa₃Si₂O₁₄ crystals [2], the more polyhedrons distortion, the higher the SHG efficiency. The SHG efficiency was studied by the powder technique and emission of a strong green light (532 nm) was observed, with an intensity weaker than that generated by LiNbO3 and La3Ga5SiO14 crystals but stronger than that obtained from Ca₃NbGa₃Si₂O₁₄ crystals.

Table 1. Data collection and handling.

Crystal: colourless prism, size $0.10 \times 0.16 \times 0.22$ mm

Wavelength: Mo K_{α} radiation (0.71073 Å)

 $\begin{array}{ll} \mu: & 183.02 \text{ cm}^{-1} \\ \text{Diffractometer, scan mode:} & \text{Bruker P4, } \omega \\ 2\theta_{\text{max}}: & 69.92^{\circ} \\ N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}: & 4938, 835 \\ \text{Criterion for } I_{\text{obs}}, N(hkl)_{\text{gt}}: & I_{\text{obs}} > 2 \, \sigma(I_{\text{obs}}), 834 \end{array}$

 $N(param)_{refined}$: 38

Program: SHELXTL [3]

^{*} Correspondence author (e-mail: dryuan@icm.sdu.edu.cn)

 $Ca_3TaGa_3Si_2O_{14}$

Table 2. Atomic coordinates and displacement parameters (in \mathring{A}^2).

Atom	Site	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ta	1 <i>a</i>	0	0	0	0.0136(2)	U_{11}	0.0104(2)	$U_{11}/2$	0	0
Ga	3 <i>f</i>	0.74569(8)	0	1/2	0.0150(2)	0.0151(2)	0.0120(2)	$U_{22}/2$	-0.00057(8)	$2U_{13}$
Ca	3 <i>e</i>	0.4241(1)	0	0	0.0171(3)	0.0255(5)	0.0134(4)	$U_{22}/2$	-0.0011(2)	$2U_{13}$
Si	2i	2/3	1/3	0.4498(3)	0.0143(4)	U_{11}	0.0116(6)	$U_{11}/2$	0	0
O(1)	2i	2/3	1/3	0.7695(9)	0.024(1)	U_{11}	0.012(2)	$U_{11}/2$	0	0
O(2)	6 <i>l</i>	0.7750(4)	-0.1401(4)	0.2367(6)	0.017(1)	0.018(1)	0.0152(9)	0.0077(9)	0.0034(8)	-0.0015(8)
O(3)	6 <i>l</i>	0.6806(5)	0.1572(5)	0.3129(6)	0.025(1)	0.018(1)	0.017(1)	0.013(1)	-0.004(1)	-0.004(1)

Acknowledgments. The authors thank the National Defence Science and the National Natural Science Foundation of China (60178029) for support.

References

- 1. Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32 (1976) 751-767.
- 2. \dot{I} l, H. J.; Yoshikawa, A.; Tsuguo, F.; Keun, H. A.: Growth and Structure of A₃NbGa₃Si₂O₁₄ (A = Sr, Ca) compounds. J. Alloys Compds. **339** (2002) 149-155.
- Sheldrick, G. M.: SHELXTL V5.1. Software Reference Manual, Bruker AXS, Inc., Madison, Wisconsin, USA 1997.