

Crystal structure of digadolinium(III) oxide disulfide, Gd_2OS_2

J. Wontcheu and Th. Schleid*

Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Received May 30, 2003, accepted and available on-line July 24, 2003; CSD-No. 409708

The title compound Gd_2OS_2 contains two crystallographically different Gd^{3+} cations, each in sevenfold coordination. The anionic coordination polyhedron about $\text{Gd}1$ can be described as a distorted monocapped trigonal prism $[(\text{Gd}1)\text{O}_3(\text{S}1)_{2+1}(\text{S}2)]$, while one O^{2-} and six S^{2-} anions build a more perfect monocapped trigonal prism $[(\text{Gd}2)\text{O}(\text{S}1)_2(\text{S}2)_4]$ around $\text{Gd}2$ where the cap is formed by the single oxygen above the rectangular $(\text{S}1, \text{S}1, \text{S}2, \text{S}2)$ face. The O^{2-} coordination sphere actually consists of four Gd^{3+} cations arranged as $[\text{OGd}_4]^{10+}$ tetrahedron with $\text{O}-\text{Gd}$ distances of 227 pm, 229 pm, 230 pm and 232 pm. Two $[\text{O}(\text{Gd}1)_3(\text{Gd}2)]^{10+}$ tetrahedra are bridged by a common $\text{Gd}1-\text{Gd}1$ edge ($d(\text{Gd}1-\text{Gd}1) = 361$ pm) to form cationic dimers $[\text{O}_2\text{Gd}_6]^{14+}$ surrounded by sixteen S^{2-} and six O^{2-} anions. Further connectivity of these dimers occurs via oxygen and terminal $\text{Gd}1$ atoms so that the latter become part of the bridging edge of the next dimers (see figure). When all $\text{Gd}1$ termini are connected, two-dimensional infinite layers stacked along $[001]$ and described as $[\text{O}(\text{Gd}1)_3/(\text{Gd}2)_1]^{4+}$ appear within the structural framework. Different layers are held together by two crystallographically independent S^{2-} anions occupying free edges and faces of the O^{2-} centred $(\text{Gd}^{3+})_4$ tetrahedra. Finally, the crystal structure shows two different S^{2-} anions that exhibit a vicinity of four plus one ($\text{S}1$) or five Gd^{3+} cations ($\text{S}2$) in the shape of distorted tetragonal pyramids ($d(\text{S}-\text{Gd}) = 277$ pm – 295 pm, 314 pm).

Abstract

Gd_2OS_2 , monoclinic, $P12_1/c1$ (No. 14), $a = 8.3365(6)$ Å, $b = 6.9872(5)$ Å, $c = 6.9231(5)$ Å, $\beta = 99.463(6)^\circ$, $V = 397.8$ Å 3 , $Z = 4$, $R_{\text{gt}}(F) = 0.022$, $wR_{\text{ref}}(F^2) = 0.047$, $T = 293$ K.

Source of material

The new oxysulfide Gd_2OS_2 was obtained by reacting a mixture of Gd_2O_3 , S and Gd (molar ratio 1:9:6) at 1123 K for seven days in an evacuated sealed silica ampoule when an excess of CsCl is added as flux. Apart from the large, colourless, square brick-shaped single crystals of Gd_2OS_2 , which turned out to be air- and water-resistant, traces of Gd_2S_3 were also present as by-product.

Discussion

Since 1990, rare-earth oxysulfides of the general formula M_2OS_2 are already known with $\text{M} = \text{Sm}, \text{Tb}, \text{Dy}$ and Y obtained at lower temperature under normal pressure [1–5]. They were also accessible with $\text{M} = \text{Er}, \text{Tm}$ and Yb by using high-pressure/high-temperature techniques [6]. However, the isotypic gadolinium compound was to date unknown.

Table 1. Data collection and handling.

Crystal:	colourless, brick-shaped, size $0.06 \times 0.08 \times 0.09$ mm
Wavelength:	Mo $K\alpha$ radiation (0.71069 Å)
μ :	338.85 cm $^{-1}$
Diffractometer, scan mode:	Nonius Kappa-CCD, φ/ω
$2\theta_{\text{max}}$:	55.02°
$N(hkl)$ measured, $N(hkl)$ unique:	7293, 911
Criterion for I_{obs} , $N(hkl)$ gt:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 868
$N(\text{param})$ refined:	47
Programs:	SHELXL-97 [7], DIAMOND [8]

* Correspondence author (e-mail: schleid@iac.uni-stuttgart.de)

Table 2. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	<i>x</i>	<i>y</i>	<i>z</i>	<i>U</i> ₁₁	<i>U</i> ₂₂	<i>U</i> ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
Gd(1)	4e	0.57804(3)	0.64080(4)	0.81736(4)	0.0073(2)	0.0074(2)	0.0068(2)	-0.0005(1)	0.0014(1)	0.0009(1)
Gd(2)	4e	0.13707(3)	0.55507(4)	0.75008(4)	0.0068(2)	0.0075(2)	0.0072(2)	0.0008(1)	0.0005(1)	-0.0002(1)
O	4e	0.3832(5)	0.0881(6)	0.3507(6)	0.008(2)	0.004(2)	0.009(2)	0.000(2)	0.003(2)	0.001(2)
S(1)	4e	0.6789(2)	0.1371(2)	0.0695(2)	0.0102(7)	0.0091(8)	0.0085(7)	-0.0006(5)	0.0025(5)	-0.0020(5)
S(2)	4e	0.0773(2)	0.2762(2)	0.0297(2)	0.0075(7)	0.0079(7)	0.0085(6)	-0.0006(5)	0.0015(5)	-0.0002(6)

Acknowledgments. The authors are indebted to Dr. Helge Müller-Bunz for the single crystal measurement and to the State of Baden-Württemberg (Stuttgart) for financial support.

References

1. Lissner, F.; Schleid, Th.: Über Sulfide und Oxidsulfide des Samariums. *Z. Naturforsch.* **47 b** (1992) 1614-1620.
2. Schleid, Th.: A New Oxysulfide of Terbium: Tb₂OS₂. *Eur. J. Solid State Inorg. Chem.* **28** (1991) 557-562.
3. Schleid, Th.: Zwei Formen von Dy₂OS₂. *Z. Anorg. Allg. Chem.* **602** (1991) 39-47.
4. Schleid, Th.: Crystal Structures of D-Y₂S₃ and Y₂OS₂. *Eur. J. Solid State Inorg. Chem.* **29** (1992) 1015-1028.
5. Schleid, Th.: Zur Kristallchemie von Selten-Erd-Sesquisulfiden und ihren Derivaten. *Habilitationsschrift*, Universität Hannover, Germany 1993.
6. Range, K.-J.; Lange, K. G.; Gietl, A.: Rare Earth Sulphide Oxides Ln₂S₂O (Ln = Er, Tm, Yb): High Pressure Synthesis and Crystal Structure. *J. Less-Common Met.* **158** (1990) 137-145.
7. Sheldrick, G. M.: SHELXL-97. Program System for Crystal Structure Determination and Refinement. Universität Göttingen, Germany 1997.
8. Brandenburg, K.: Diamond (Version 2.1a). Visual Crystal Structure Information System. Crystal Impact GbR, Bonn, Germany 1999.