


Crystal structure of dialuminum difluorotetraoxogermanate, $\text{Al}_2\text{GeO}_4\text{F}_2$

M. D. Mathews^I, A. K. Tyagi^I and J. Köhler^{*II}

^I Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India

^{II} Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany

Received June 23, 2003, accepted and available on-line August 22, 2003; CSD-No. 409714

Abstract

$\text{Al}_2\text{F}_2\text{GeO}_4$, orthorhombic, $Pnma$ (No. 62), $a = 8.985(1)$ Å, $b = 8.521(1)$ Å, $c = 4.755(1)$ Å, $V = 364.0$ Å 3 , $Z = 4$, $R(P) = 0.095$, $R(I) = 0.061$, $T = 295$ K.

Source of material

The white colored title compound was obtained by heating intimate mixtures of appropriate amounts of predried AlF_3 (99.9%; ALPHA), Al_2O_3 (99.9%; ALPHA) and GeO_2 (99.9%; ALPHA) at 973 K for 24 h in an argon filled sealed platinum tube, followed by a slow cooling to room temperature.

Discussion

A new oxidefluoride $\text{Al}_2\text{GeO}_4\text{F}_2$ which is isotypic to topaz [1] and $\text{V}_2\text{GeO}_4\text{F}_2$ [2] has been prepared.

The refinements have been performed with an ordering of O and F on the anion sites as found in topaz and $\text{V}_2\text{GeO}_4\text{F}_2$. There are three types of oxygen atoms in the structure of $\text{Al}_2\text{GeO}_4\text{F}_2$ which are arranged in a close packing (cf. figure). One third of the octahedral holes are occupied by Al and one-twelfth of tetrahedral holes by Ge. The Ge—O bond distances within the GeO_4 tetrahedra are ranging from 1.732(5) Å to 1.773(3) Å. It is remarkable that in the AlO_4F_2 octahedra the Al—F bond distances of 1.791(3) Å and 1.844(4) Å are shorter than the Al—O bond distances which range from 1.865(4) Å to 1.902(4) Å. A similar situation is found for $\text{Al}_2\text{GeO}_4(\text{OH})_2$ [3] where the Al—O(4) distances are short (1.863 Å and 1.866 Å) compared to the distances of Al to O(1), O(2) and O(3) which belong to the GeO_4 tetrahedra. The GeO_4 tetra-

hedra and AlO_4F_2 octahedra are connected via two common edges to give zigzag chains along b axis. These chains are linked via corners to form a three dimensional network. It may be noted that the occurrence of such oxidefluorides or oxidehydroxide is quite limited [3,4].

Table 1. Data collection and handling.

Powder:	white
Wavelength:	$\text{Cu } K\alpha$ radiation (1.54051 Å)
μ :	172.76 cm $^{-1}$
Diffractometer, scan mode:	Scintag XDS2000, ω/θ
$2\theta_{\text{max}}$, stepwidth:	99.69°, 0.02°
$N(\text{points})_{\text{measured}}$:	4484
$N(\text{hkl})_{\text{measured}}$:	225
$N(\text{param})_{\text{refined}}$:	22
Programs:	CSD [5], DIAMOND [6]

Table 2. Atomic coordinates and displacement parameters (in Å 2).

Atom	Site	x	y	z	B_{iso}
Al(1)	8d	0.1326(2)	0.0817(2)	0.5920(4)	0.74(4)
Ge(1)	4c	0.4389(1)	1/4	0.4009(3)	1.68(3)
F(1)	8d	0.7532(3)	0.0540(3)	0.5981(7)	1.00
O(1)	4c	0.2480(5)	1/4	0.4517(9)	1.00
O(2)	4c	0.0373(5)	1/4	0.7772(9)	1.00
O(3)	8d	0.9918(3)	0.0814(4)	0.2933(7)	1.00

Acknowledgment. The authors thank BMBF for financial support.

References

1. Ribbe, P. H.; Gibbs, G. V.: Crystal structure of topaz and its relation to physical properties. *Am. Miner.* **56** (1971) 24-30.
2. Achary, S. N.; Tyagi, A. K.; Köhler, J.: Preparation, structure and properties of $\text{V}_2\text{GeO}_4\text{F}_2$ -chains of VO_4F_2 in the first V(III) metallate fluoride. *J. Solid State Chem.* **165** (2002) 74-78.
3. Marler B.; Wunder B.: Crystal structure of dialuminum dihydroxogermanate, $\text{Al}_2\text{GeO}_4(\text{OH})_2$. *Z. Kristallogr. NCS* **213** (1998) 3.
4. Marler B.; Wunder B.: Ge analogs of aluminum silicates-High Pressure synthesis and properties of orthorhombic $\text{Al}_2\text{GeO}_4(\text{OH})_2$. *Eur. J. Miner.* **9** (1997) 1147-1158.
5. Akselrud, L. G.; Zavalii, P. Y.; Grin, Yu. N.; Pecharsky, V. K.; Baumgartner, B.; Wölfel, E.: CSD, an universal program package for single crystal and/or powder structure data treatment. *Mater. Sci. Forum*, **133-136** (1993) 335-340.
6. Brandenburg, K.: DIAMOND Version 2.1e, Crystal Impact GbR, Bonn, Germany 1996-2001.

* Correspondence author (e-mail: j.koehler@fkf.mpg.de)