


# Refinement of the crystal structure of trimercury(II) orthoborate, $\text{Hg}_3(\text{BO}_3)_2$

M. Weil\*

Vienna University of Technology, Division of Structural Chemistry, Institute for Chemical Technologies and Analytics, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria

Received February 6, 2003, accepted and available on-line May 15, 2003; CSD-No. 409688



## Abstract

$\text{B}_2\text{Hg}_3\text{O}_6$ , trigonal,  $R\bar{3}c$  (No. 167),  $a = 8.8936(9)$  Å,  $c = 13.052(3)$  Å,  $V = 894.1$  Å<sup>3</sup>,  $Z = 6$ ,  $R_{\text{gt}}(F) = 0.021$ ,  $wR_{\text{ref}}(F^2) = 0.053$ ,  $T = 293$  K.

## Source of material

Stoichiometric amounts of  $\text{B}_2\text{O}_3$  (Merck, p. A.) and  $\text{HgO}$  (Merck, p. A.) were heated in a sealed and evacuated silica tube at 723 K for two days which yielded a light-orange polycrystalline product. Application of a temperature gradient 773 K → 723 K for two days led to the formation of colourless single crystals with mostly pinacoidal habit and a length of up to 2 mm at the colder zone of the tube.

## Discussion

$\text{Hg}_3(\text{BO}_3)_2$  has been structurally determined in a previous work by Rietveld refinement of X-ray powder data [1], using the structure of the isotypic  $\text{Eu}_3(\text{BO}_3)_2$  [2] as a starting model.  $\text{Ca}_3(\text{BO}_3)_2$  is another member of this structural family [3,4].  $\text{Hg}(\text{II})$  com-

pounds normally show a unique crystal chemistry with a pronounced linear coordination [5,6] of the metal atom in comparison with e.g. the given  $\text{Eu}$  and  $\text{Ca}$  compounds. Since the previous model determined by the Rietveld refinement reveals an eight-fold coordinate  $\text{Hg}$  atom with more or less similar  $\text{Hg}—\text{O}$  distances, it seemed reasonable to refine the structure with higher accuracy on the basis of single crystal data.

$\text{Hg}_3(\text{BO}_3)_2$  is composed of columns of mercury atoms extended parallel to [001] and which are almost coincident with the  $3_1$  axis. The nearly planar borate anions are situated on trigonal prismatic holes around the threefold axes and are linked with the metal atoms via short  $\text{Hg}—\text{O}$  distances, as emphasized by the bold sticks in the figure. In contrast to the previous model,  $\text{Hg}$  shows the expected linear coordination with two very short  $\text{Hg}—\text{O}$  distances of 2.033(4) Å and an  $\angle \text{O}—\text{Hg}—\text{O}$  angle of 176.6(2)°. The two next nearest  $\text{O}$  atoms show significantly longer distances of 2.675(4) Å; the coordination around the  $\text{Hg}$  atom is augmented by four  $\text{O}$  atoms with long distances of 3.027(4) Å and 3.044 Å. The geometry of the  $\text{BO}_3^{3-}$  group deviates only slightly from that of an equilateral triangle and lies with a  $\text{B}—\text{O}$  distance of 1.375(4) Å and an  $\angle \text{O}—\text{B}—\text{O}$  angle of 119.98(2)° within the scope of the expected values [7].

**Table 1.** Data collection and handling.

|                                                         |                                                    |
|---------------------------------------------------------|----------------------------------------------------|
| Crystal:                                                | colourless pinacoid,<br>size 0.22 × 0.33 × 0.38 mm |
| Wavelength:                                             | Mo $K\alpha$ radiation (0.71073 Å)                 |
| $\mu$ :                                                 | 770.51 cm <sup>-1</sup>                            |
| Diffractometer, scan mode:                              | Siemens SMART CCD, $\omega$                        |
| $2\theta_{\text{max}}$ :                                | 60.92°                                             |
| $N(hkl)_{\text{measured}}$ , $N(hkl)_{\text{unique}}$ : | 3135, 309                                          |
| Criterion for $I_{\text{obs}}$ , $N(hkl)_{\text{gt}}$ : | $I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$ , 307  |
| $N(\text{param})_{\text{refined}}$ :                    | 19                                                 |
| Programs:                                               | SHELXL-97 [8], HABITUS [9],<br>ATOMS [10]          |

**Table 2.** Atomic coordinates and displacement parameters (in Å<sup>2</sup>).

| Atom | Site | $x$        | $y$       | $z$       | $U_{11}$  | $U_{22}$  | $U_{33}$  | $U_{12}$   | $U_{13}$   | $U_{23}$  |
|------|------|------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|
| Hg   | 18e  | 0.35247(5) | 0         | 1/4       | 0.0117(2) | 0.0101(2) | 0.0184(2) | $U_{22}/2$ | 0.00037(4) | $2U_{13}$ |
| B    | 12c  | 0          | 0         | 0.3873(6) | 0.009(2)  | $U_{11}$  | 0.012(3)  | $U_{11}/2$ | 0          | 0         |
| O    | 36f  | 0.1776(5)  | 0.0738(5) | 0.1111(3) | 0.010(2)  | 0.010(2)  | 0.027(2)  | 0.005(2)   | -0.003(1)  | 0.002(1)  |

\* e-mail: mweil@mail.zserv.tuwien.ac.at

## References

1. Laureiro, Y.; Veiga, M. L.; Isasi, J.; Ramos, E.; Jerez, A.; Pico, C.: Synthesis and structural characterization of Hg<sub>3</sub>(BO<sub>3</sub>)<sub>2</sub>. *J. Mater. Sci. Lett.* **10** (1991) 635-637.
2. Machida, K. I.; Adachi, G. Y.; Hata, H.; Shiokawa, J.: The crystal structure and magnetic property of europium(II) orthoborate. *Bull. Chem. Soc. Jpn.* **54** (1981) 1052-1055.
3. Schuckmann, W.: Zur Kristallstruktur des Calcium-Borates Ca<sub>3</sub>(BO<sub>3</sub>)<sub>2</sub>. *Neues Jahr. Mineral. Monatsh.* (1969) 142-143.
4. Vegas, A.; Cano, F. H.; García-Blanco, S.: The crystal structure of calcium orthoborate: a redetermination. *Acta Crystallogr. B* **31** (1975) 1416-1419.
5. Grdenić, D.: The Structural Chemistry of Mercury. *Q. Rev. Chem. Soc.* **19** (1965) 303-328.
6. Aurivillius, K.: The structural chemistry of inorganic mercury(II) compounds. *Arkiv Kemi* **24** (1965) 151-187.
7. Zobetz, E.: Über die Gestalt von BO<sub>3</sub>-Gruppen. *Z. Kristallogr.* **160** (1982) 81-92.
8. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.
9. Herrendorf, W.: HABITUS. Universities of Karlsruhe & Gießen, Germany 1993-1997.
10. Dowty, E.: ATOMS for Windows. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA 2000.