


# Refinement of the crystal structure of dilithium zirconium hexafluoride, $\text{Li}_2\text{ZrF}_6$ , synthesized at 11 GPa and 1063 K

A. Grzechnik<sup>\*I</sup> and J.-Y. Gesland<sup>II</sup>

<sup>I</sup> Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany

<sup>II</sup> Université du Maine-Cristallogénese, F-72025 Le Mans cedex, France

Received October 23, 2002, accepted and available on-line January 4, 2003; CSD-No. 409667



## Abstract

$\text{F}_6\text{Li}_2\text{Zr}$ , monoclinic,  $P12_1/c1$  (No. 14),  $a = 7.4223(1)$  Å,  $b = 4.9492(1)$  Å,  $c = 10.9691(1)$  Å,  $\beta = 106.95(1)$ °,  $V = 385.4$  Å<sup>3</sup>,  $Z = 4$ ,  $R(P) = 0.055$ ,  $R(I) = 0.133$ ,  $T = 293$  K.

## Source of material

A single crystal of  $\text{Li}_2\text{ZrF}_6$ , grown by the Czochralski method, was ground into a fine powder in ethanol. The high-pressure high-temperature syntheses were performed with a Walker-type multi-anvil apparatus. The pressure medium consisted of a  $\text{MgO}$  (95 %wt.) /  $\text{Cr}_2\text{O}_3$  (5 %wt.) octahedron with the edge length of 18 mm. Force was applied by eight tungsten carbide cubes with

corners truncated to triangular faces. The samples, loaded into Pt ampoules of 2 mm in diameter and of 3.5 mm in height, were pressurized to 11 GPa and then heated at 1063 K for 2 hours. The heating elements, isolated from the ampoules by  $\text{MgO}$  sleeves, were made of  $\text{LaCrO}_3$  ceramics. The temperatures at the samples were measured with the W-26%Re / W-5%Re thermocouples. The recovered product was investigated with powder X-ray diffraction at ambient conditions.

## Experimental details

The unit cell parameters were refined on 59 reflections ( $2\theta < 66.04$ °) using the Program CELREF [1]. Silicon (NIST SRM Silicon 640c,  $a = 5.431195(9)$  Å) was used as internal standard. Our lattice parameters deviate from those reported earlier [2] ( $a = 7.43$  Å,  $b = 4.9167$  Å,  $c = 10.9792$  Å,  $\beta = 106.99$ °,  $V = 383.5$  Å<sup>3</sup>; 21 reflections in a similar  $2\theta$  range were used for the refinement) for a sample synthesized at different conditions (7 GPa and 973 K). The  $\text{Li}_2\text{TbF}_6$  structural model of [3] was used for the Rietveld refinement of the high-pressure high-temperature phase of  $\text{Li}_2\text{ZrF}_6$ .

## Discussion

At atmospheric conditions,  $\text{Li}_2\text{ZrF}_6$  ( $P\bar{3}1m$ , No. 164,  $Z = 1$ ) has a structure in which all the cations are octahedrally coordinated to fluorine atoms [4,5]. The anions are in a hexagonal-close-packed array. The octahedra around the Li atoms share their edges. The octahedra  $\text{ZrF}_6$  share all their corners with the  $\text{LiF}_6$  polyhedra. It is a disordered variant of the colquiriite structure ( $P31c$ , No. 163,  $Z = 2$ ) [6].

Above 7 GPa and 973 K, this compound transforms into a new phase [2] of the  $\text{Li}_2\text{TbF}_6$  type ( $P2_1/c$ , No. 14,  $Z = 4$ ) [3,5] with the zirconium atoms in edge-sharing bicapped trigonal prisms along the  $a$  axis. Lithium atoms are present in two types of coordination polyhedra: octahedra and square pyramids. This structure could be considered a distorted variant of the  $\gamma$ - $\text{Na}_2\text{UF}_6$  ordered fluorite ( $Imm$ ,  $Z = 2$ ), in which all the cations are surrounded by fluorines in a cube coordination [3].

**Table 1.** Data collection and handling.

|                                        |                                           |
|----------------------------------------|-------------------------------------------|
| Powder:                                | white                                     |
| Wavelength:                            | $\text{Cu} K\alpha$ radiation (1.54060 Å) |
| $\mu$ :                                | 138.8 cm <sup>-1</sup>                    |
| Diffractometer, scan mode:             | Stoe STADI P, 2θ                          |
| $2\theta_{\max}$ , stepwidth:          | 99.96°, 0.02°                             |
| $N(\text{points})_{\text{measured}}$ : | 4849                                      |
| $N(\text{hkl})_{\text{measured}}$ :    | 394                                       |
| $N(\text{param})_{\text{refined}}$ :   | 33                                        |
| Programs:                              | CELLREF [1], GSAS [8], DIAMOND [9]        |

\* Correspondence author (e-mail: andrzej@fkf.mpg.de)

**Table 2.** Atomic coordinates and displacement parameters (in Å<sup>2</sup>).

| Atom  | Site | <i>x</i>  | <i>y</i>  | <i>z</i>  | <i>U</i> <sub>iso</sub> |
|-------|------|-----------|-----------|-----------|-------------------------|
| Zr    | 4e   | 0.2520(3) | 0.5141(2) | 0.0009(2) | 0.0167(2)               |
| F(1)  | 4e   | 0.4537(8) | 0.189(1)  | 0.4299(5) | 0.010                   |
| F(2)  | 4e   | 0.1043(8) | 0.3578(9) | 0.8242(5) | 0.010                   |
| F(3)  | 4e   | 0.0466(8) | 0.229(1)  | 0.5468(5) | 0.010                   |
| F(4)  | 4e   | 0.3948(8) | 0.2163(9) | 0.6533(5) | 0.010                   |
| F(5)  | 4e   | 0.2450(7) | 0.6479(9) | 0.3980(4) | 0.010                   |
| F(6)  | 4e   | 0.2510(7) | 0.746(1)  | 0.6503(4) | 0.010                   |
| Li(1) | 4e   | 0.407(2)  | 0.518(4)  | 0.306(2)  | 0.020                   |
| Li(2) | 4e   | 0.038(2)  | -0.019(4) | 0.172(2)  | 0.020                   |

*Acknowledgments.* We thank J. Köhler and J. Nuss for discussions.

## References

1. Augier, J.; Bochu, B.: CELREF unit-cell refinement software on a multi-phase system (<http://www.inpg.fr/LMPG/> and <http://www.ccp14.ac.uk/>).
2. Demazeau, G.; Menil, F.; Portier, J.; Hagenmuller, P.: Evolution structurale sous haute pression des hexafluorures Li<sub>2</sub>MF<sub>6</sub>. C. R. Acad. Sc. Paris Serie C **273** (1971) 1641-1644.
3. Laligant, Y.; Le Bail, A.; Ferey, G.; Avignant, D.; Cousseins, J. C.: Determination of the crystal structure of Li<sub>2</sub>TbF<sub>6</sub> from X-ray and neutron powder diffraction. An example of lithium in five-fold coordination. Eur. J. Solid State Inorg. Chem. **25** (1988) 551-563.
4. Hoppe, R.; Dahne, W.: Zur Kristallstruktur von Li<sub>2</sub>ZrF<sub>6</sub>. Naturwiss. **47** (1960) 397.
5. Brunton, G.: Li<sub>2</sub>ZrF<sub>6</sub>. Acta Crystallogr. B **29** (1973) 2294-2296.
6. Yin, Y.; Keszler, D.A.: Crystal chemistry of colquiriite-type fluorides. Chem. Mater. **4** (1992) 645-648.
7. Guillot, M.; El-Ghazzi, M.; Avignant, D.; Ferey, G.: Magnetic properties of the Tb<sup>4+</sup> ion in Li<sub>2</sub>TbF<sub>6</sub>: particular crystal chemical behavior within the Li<sub>2</sub>M<sup>1</sup>VF<sub>6</sub> compounds. J. Solid State Chem. **97** (1992) 400-404.
8. Larson, A. C.; von Dreele, R. B.: GSAS: General Structure Analysis System, Los Alamos National Laboratory, USA 2000.
9. Brandenburg, K.; Berndt, M.: DIAMOND, Crystal Impact, GbR, Bonn, Germany 2000.