
© by Oldenbourg Wissenschaftsverlag, München

Refinement of the crystal structure of arsenolite, As₂O₃

P. Ballirano* and A. Maras

Universitá di Roma "La Sapienza", Dipartimento Scienze della Terra, P.le Aldo Moro 5, Roma, I-00185, Italy

Received March 21, 2002, accepted and available on-line May 7, 2002; CSD-No. 409611

Abstract

As₂O₃, cubic, $Fd\overline{3}m$ (No. 227), a = 11.07343(5) Å, V = 1357.8 Å³, Z = 16, R(P) = 0.056, wR(P) = 0.073, R(I) = 0.068, T = 295 K.

Source of material

A white powder of the title compound was obtained by oxidation of realgar (As₄S₄). A crystal of realgar from M.te Sughereto, Latium, Italy has been crushed into an agate mortar. An open quartz-glass capillary was filled with the resulting red-ruby powder and inserted into an electric oven at 568 K. The sample was kept at this temperature for a week.

Experimental details

The capillary was mounted on a goniometer head and fitted in a Siemens D5005 automatic powder diffractometer operating in transmission geometry. The instrument has Goebel mirrors along the incident beam providing a X-ray parallel beam.

Starting positional parameters were those of [1] after origin redefinition ($Fd\overline{3}m$, origin choice 2). Background was fitted with a Chebyshev polynomial, peak shape by a pseudo-Voigt modified to incorporate asymmetry [2]. Absorption was modelled by means of the empirical formula [3]. The presence of preferred orientation effects was checked [4].

Discussion

The structure of arsenolite, the cubic As_2O_3 polymorph $(Fd\overline{3}m, a = 11.074 \text{ Å})$, has been determined by Bozorth [5] and subsequently confirmed in [1,6,7]. The best available structural data of arsenolite [1], however, report strongly negative displacement parameters of As.

The structure of arsenolite may be described by As₄O₆ cages built up by AsO₃ ψ -tetrahedra linked via bridging oxygens. The As—O bond distance is of 1.786(2) Å, the O-As-O and As-O-As bond angles are of 98.4(2)° and 128.7(3)°, respectively. These values compares favourably with reference data (1.787 Å, 98.3°, and 128.8° [1]). Anisotropic thermal parameters of both As and O are similar to those reported for senarmontite, Sb₂O₃ [8].

Table 1. Data collection and handling.

Powder:	white
Wavelength:	Cu K_{α} radiation (1.54059 Å)
μ:	229.82 cm ⁻¹
Diffractometer, scan mode:	Siemens D5005, transmission
$2\theta_{\text{max}}$, stepwidth:	150°, 0.02°
N(points)measured:	7000
N(hkl) _{measured} :	175
N(param)refined:	59
Program:	GSAS [9]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
As O	32e 48f	0.77221(5) 0.9524(4)	<i>x</i> 1/8	<i>x</i> 1/8	0.0169(3) 0.027(3)	<i>U</i> ₁₁ 0.020(2)	U ₁₁ U ₂₂	0.0003(3) 0	$egin{matrix} U_{12} \ 0 \end{bmatrix}$	<i>U</i> ₁₂ 0.010(2)

^{*} Correspondence author (e-mail: paolo.ballirano@uniromal.it)

Acknowledgmen. This work was supported by MIUR-cofin "Research into the alteration of realgar by advanced techniques".

References

- Pertlik, F.: Structure refinement of cubic As₂O₃ (arsenolite) with single crystal data. Czech. J. Phys. 28 (1974) 170-176.
- Finger, L. W.; Cox, D. E.; Jephcoat, A. P.: A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Crystallogr. 27 (1994) 892-900.
- Lobanov, N. N.; Alte de Vega, L.: Analytic absorption correction factors for cylinders to an accuracy of 0.5%. 6th European Powder Diffraction Conference, 1998, Abstract P12-16.
- Von Dreele, R. B.: Quantitative texture analysis by Rietveld refinement. J. Appl. Crystallogr. 30 (1997) 517-525.
- Lihl, F.: Praezisionsbestimmung der Gitterkonstanten von As₂O₃. Z. Kristallogr. 81 (1932) 142-147.
- Almin, K.; Westgren, A.: The lattice parameters of the cubic As₂O₃ and Sb₂O₃. Ark. Kemi, Mineral. Geol. 15B (1942) 1-7.
- Svensson, C.: Refinement of the crystal structure of cubic antimony trioxide, Sb₂O₃. Acta Crystallogr. B31 (1975) 2016-2018.
- Larson, A. C.; Von Dreele, R. B.: GSAS, General Structure Analysis System, University of California, USA 1985.