
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of pentalanthanum bromotriindate, La₅In₃Br

C. Zheng*, S. Li¹, Hj. Mattausch^{II} and A. Simon^{II}

Northern Illinois University, Department of Chemistry and Biochemistry, DeKalb, IL 60115, USA

Received June 13, 2002, accepted and available on-line August 7, 2002; CSD-No. 409631

Abstract

BrIn₃La₅, hexagonal, $P6_3/mcm$ (No. 193), a = 9.828(2) Å, c = 6.829(3) Å, V = 571.3 Å³, Z = 2, $R_{gt}(F) = 0.030$, $wR_{ref}(F^2) = 0.065$, T = 293 K.

Source of material

The title compound was synthesized from stoichiometric mixtures of La, LaBr₃ and In under Ar-atmosphere in a sealed Ta ampoule at 1173 K for 65 days. As the reactants and the product are air and moisture sensitive, all handling was carried out under Ar atmosphere inside a glove box or through the Schlenk technique.

Discussion

The Mn₅Si₃-type lattice is known to possess an amazing ability to host a large number of interstitials ranging from the main group elements B, C, N, O, Cl, Si, Br, I to transition metals Mn, Fe, Cu, Zn, Ag and Cd, among others [1-5]. These compounds, derived from the Nowotny phases [6-8], is exemplified by La₅Sn₃Br, which has 34 valence electrons [5]. Computational analysis demonstrated that the host lattice with La as the main component is very tolerant to the variation of the number of valence electrons [5]. This has led us to attempt the synthesis of La₅In₃Br, which is the first compound with a lanthanide as the first component and a group 13 element as the second. The number of valence electrons of 31 is still within the bonding range of the host framework [5]. In this contribution we present the single crystal structure of La₅In₃Br. As described elsewhere [2,5], the structure consists of face-sharing La6 octahedron chains parallel to the c-axis (see figure). These octahedra of La1 are centered by the Br species and surrounded by type 2 La (La2) and the In atoms. La2 forms chains, also parallel to the c-axis, in the channels between these La6 octahedron chains. The La2—La2 and La1—La2 distances are 3.414(2) Å and 4.029(1) Å, respectively. The latter is shorter than the La1-La1 distances of 4.302 Å - 4.534 Å in the La6 octahedron. The shortest La1—In distance is 3.351(2) Å. The La2—In distance is 3.4750(9) Å. Thus the primary metal-metal interaction is between La2 and La2, La1 and In, La1 and La2, La2 and In. The bonding pattern has been analyzed previously [2,5]. It is interesting to note that no La₅In₃ phase has been reported. The smaller number of valence electrons, as compared to that of La₅Sn₃ (Mn₅Si₃ type), is probably not enough for stability at least in the Mn₅Si₃ structure.

Finally, we should mention that many crystals of the title compound exhibit super-reflections that lead to the increase of the a-and b-axis lengths by a factor of $\sqrt{3}$.

SHEXTL [9], SADABS [10]

Table 1. Data collection and handling.

Programs:

Crystal: metallic fragment, size $0.02 \times 0.04 \times 0.06$ mm Wavelength: Mo K_a radiation (0.71073 Å) 276.23 cm⁻¹ Siemens SMART CCD, ω 50° 50° 0.04×0.06 mm Siemens SMART CCD, ω 50° 0.04×0.06 Siemens SMART CCD, ω 50° 0.04

II Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

^{*} Correspondence author (e-mail: zheng@cz.chem.niu.edu)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	х	у	z	<i>U</i> ₁₁	U_{22}	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
La(1)	6g	0.2664(1)	0	1/4	0.0174(6)	0.0155(8)	0.067(1)	0.0077(4)	0	0
a(2)	4d	1/3	2/3	0	0.0490(8)	U{11}	0.0177(9)	$U_{11}/2$	0	0
n	6g	0.3927(2)	x	1/4	0.0180(7)	U_{11}	0.116(2)	0.0096(7)	0	0
Br	2b	0	0	0	0.019(1)	U_{11}	0.066(3)	$U_{11}/2$	0	0

Acknowledgments. We acknowledge the support by NSF (grants DMR-9704048 and CHE-9974760) and by the Max-Planck-Gesellschaft.

References

- Kwon, Y.-U.; Rzeznik, M. A.; Guloy, A.; Corbett, J. D.: Impurity Stabilization of Phases with the Mn₅Si₃-Type Structure. Question Regarding La₅Sn₃ and Zr₅Si₃. Chem. Mater. 2 (1990) 546-550.
- Corbett, J. D.; Garcia, E.; Guloy, A. M.; Hurng, W.-M.; Kwon, Y.-U.; Leon-Escamilla, E. A.: Widespread Interstitial Chemistry of Mn₅Si₃-Type and Related Phases. Hidden Impurities and Opportunities. Chem. Mater. 10 (1998) 2824-2836.
- Hurng, W.-M.; Corbett, J. D.: Alkaline-Earth-Metal Antimonides and Bismuthides with the A₅Pn₃ Stoichiometry. Interstitial and Other Zintl Phases Formed on Their Reactions with Halogen or Sulfur. Chem. Mater. Chem. Mater. 1 (1989) 311-319.
- Jensen, E. A.; Hoistad, L. M.; Corbett, J. D.: Lanthanum and Praseodymium Bromide Pnictides. A Convergence of Interstitial Chemistry in Cluster Halides and Intermetallic Pnictides. J. Solid State Chem. 144 (1999) 175-180.
- Zheng, C.; Mattausch, Hj.; Simon, A.: La₅M₃X (M = Sn, Bi; X = Cl, Br, I): Exploring the Limit of the Mn₅Si₃-type Hosting Lattice. J. Alloys Compds., in press.

- Jeitschko, W.; Nowotny, H.; Benesovsky, F.: Kohlenstoffhaltige ternaere Verbindungen (V-Ge-C, Nb-Ga-C, Ta-Ga-C, Ta-Ge-C, Cr-Ga-C und Cr-Ge-C). Monatsh. Chem. 94 (1963) 844-850.
- Jeitschko, W.; Nowotny, H.; Benesovsky, F.: Verbindungen vom Typ T₅M₃X (T = Uebergangsmetall, M = Ga, Ge, X = C, N). Monatsh. Chem. 95 (1964) 1242-1246.
- Nowotny, H.; Benesovsky, F.: Phase Stability and Crystal Chemistry of Complex Compounds Containing Transition Elements and Nonmetals. In: Phase Stability in Metals and Alloys (Eds. P. S. Rudman, J. Stringer, and R. I. Jaffee), p. 319, McGraw-Hill, 1966.
 Sheldrick, G.M.: SHELXTL. Version 5.1. Bruker Analytical X-Ray Sys-
- Sheldrick, G.M.: SHELXTL. Version 5.1. Bruker Analytical X-Ray Systems, Madison, Wisconsin, USA 1999.
- Sheldrick, G.M.: SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany. (2000).