
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of barium arsenide auride, Ba₈As₅Au

J. Nuss* and M. Jansen

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany

Received April 25, 2002, accepted and available on-line July 16, 2002; CSD-No. 409623

Abstract

As₅AuBa₈, cubic, $I\overline{4}3d$ (No. 220), a = 9.9607(7) Å, V = 988.3 Å³, Z = 2, $R_{gt}(F) = 0.033$, $wR_{ref}(F^2) = 0.053$, T = 293 K.

Source of material

Ba₈As₅Au was synthesized from BaAs, Ba and Au (ratio 5:3:1) in sealed tantalum ampoules at 1175 K. Single crystals were isolated from slowly cooled samples (cooling rate: 25 K/h).

Experimental details

The absolute configuration in respect to the polarity of the space group was proven by changing the sign of the hkl indices. The $wR(F^2)$ values for the possible orientations were 0.053 and 0.109, respectively. The first one represents the absolute configuration of the crystal studied.

Discussion

 Ba_8As_5Au crystallizes in the anti- Th_3P_4 type of structure where arsenic and gold share the thorium position (12a). The site occupation factors were refined with the restraint SOF(12a) =

SOF(As) + SOF(Au) = 1, converging to $SOF(As) \cong 5/6$ and $SOF(Au) \cong 1/6$, within standard deviations. Therefore SOF(As)= 5/6 and SOF(Au) = 1/6 were fixed, during the final refinements. This is compatible with the charge balance $(8 \times Ba^{2+}; 5 \times As^3)$ and 1 × Au⁻). Similar occupancies have been reported for several other compounds as Eu_4X_2Y (X = P, As, Sb, Bi; Y = S, Se, Te) [1] or Rb_4Cl_2O [2] with SOF(X):SOF(Y) = 2:1. The existence of isotypic barium phosphide chloride Ba₁₆(P_{10.05}Cl_{1.86}□_{0.09}) [3] supports the assumption of an oxidation state of -1 for gold [4]. Barium is surrounded by six anions, and the coordination polyhedron can be described either by a distorted octahedron or a twisted trigonal antiprism of As/Au. The Ba atoms form a 3D framework of condensed Bas dodecahedra, which are centered by As or Au (see figure) (d(As/Au-Ba) = 3.302(1) Å (4x) and 3.604(1) Å(4x)). The Ba₈ dodecahedra with $x_{Ba} = 0.06930(3)$ deviate from the regular one with x = 0.0833 = 1/12.

Table 1. Data collection and handling.

Crystal: block with dark metallic lustre size $0.15 \times 0.20 \times 0.25 \text{ mm}$ Wavelength: Mo K_{α} radiation (0.71073 Å) 313.28 cm Diffractometer, scan mode: SMART APEX Bruker AXS, ω 69.92° $2\theta_{\text{max}}$: N(hkl)mea 6972, 363 sured, N(hkl)unique: Criterion for Iobs, N(hkl)gt: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 349$ N(param)refined: Programs: SHELXTL-97 [5], ATOMS [6]

Acknowledgments. The authors gratefully acknowledge the help of Mrs. S. Prill-Diemer for carrying out the synthesis.

References

- Hulliger, F.: New ternary anti Th₃P₄ europium compounds. Mat. Res. Bull. 14 (1979) 259-262.
- Mudring, A.-V.; Jansen, M.: Crystal structure of tetrarubidium dichloride monooxide; Rb₄(Cl₂O). Z. Kristallogr. NCS 216 (2001) 483.
- Hadenfeldt, C.: Untersuchungen der Systeme Ba₃P₂-BaX₂ mit X = Cl, Br, I.
 Anorg. Allg. Chem. 436 (1977) 113-121.
- Feldmann, C.; Jansen, M.: Zur kristallchemischen Ähnlichkeit von Auridund Halogenid-Ionen. Z. Anorg. Allg. Chem. 621 (1995) 1907-1912.
- Sheldrick, G. M.: SHELXL-97. Program for crystal structure refinement. University of Göttingen, Germany 1997.
- 6. Dowty, E.: ATOMS (V 5.1). Shape Software, Kingsport, USA 2000.

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	Occ.	<i>x</i>	у	z	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{12}	U ₁₃	U ₂₃
Ba(1)	16c		0.06930(3)	х	x	0.0187(2)	U_{11}	U_{11}	0.0011(1)	U_{12}	U_{12}
As(2)	12 <i>a</i>	0.83	3/8	0	1/4	0.0214(4)	0.0149(3)	U_{22}	0	0	0
Au(2)	12 <i>a</i>	0.17	3/8	0	1/4	$U_{11}(As2)$	$U_{22}(As2)$	$U_{22}(As2)$	0	0	0

^{*} Correspondence author (e-mail: j.nuss@fkf.mpg.de)