

Crystal structure of diterbium orthosilicate selenide, $\text{Tb}_2(\text{SiO}_4)\text{Se}$

Ismail Ijjaali, Kwasi Mitchell and James A. Ibers*

Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Received January 3, 2002, accepted and available on-line March 25, 2002; CSD-No. 409597

Abstract

$\text{O}_4\text{SeSiTb}_2$, orthorhombic, $Pbcm$ (No. 57), $a = 6.0387(4)$ Å, $b = 6.9855(5)$ Å, $c = 10.8131(7)$ Å, $V = 456.1$ Å 3 , $Z = 4$, $R_{\text{gt}}(F) = 0.030$, $wR_{\text{ref}}(F^2) = 0.073$, $T = 153$ K.

Source of material

The reactive flux Cs_2Se_3 was prepared by the stoichiometric reaction of Cs (Aldrich, 99.5%) and Se (Aldrich, 99.5%) in liquid NH_3 . Clear needles of $\text{Tb}_2(\text{SiO}_4)\text{Se}$ were obtained accidentally in the reaction of Tb (0.547 mmol, Alfa Aesar, 99.9%), Cd

(0.543 mmol, Alfa Aesar, 99.9%), Se (1.09 mmol, Aldrich, 99.5%), CsCl (0.947 mmol, Aldrich, 99.9%), and Cs_2Se_3 (150 mg). The materials were mixed and sealed in an unprotected fused-silica tube that was then evacuated to 10^{-4} Torr. The tube was heated to 1273 K, kept at 1273 K for 50 h, cooled at 4 K/h to 473 K, and then the furnace was turned off. The reaction mixture was washed with water, then N,N -dimethylformamide, and finally dried with acetone. Semi-quantitative energy dispersive spectroscopy (EDS) analysis confirmed the presence of Tb, Si, and Se in ratio 2:1:1. EDS also indicated the presence of O but provided no evidence for the presence of Cd, Cl, or Cs. The compound resulted from the reaction of the starting components with the fused-silica tube.

Discussion

$\text{Tb}_2(\text{SiO}_4)\text{Se}$ is a new member of the $\text{Ln}_2(\text{SiO}_4)\text{Se}$ series ($\text{Ln} = \text{La}$ [1], Nd [2], Sm [3], Dy [3], Ho [3], and Er [4]). These isostructural compounds crystallize in space group $Pbcm$ of the orthorhombic system. In this layered structure, infinite chains of SiO_4^{4-} tetrahedra extend along the c axis, separated by Ln and Se atoms (upper figure). There are two crystallographically distinct Tb atoms, both coordinated by six O atoms and two Se atoms. Atom Tb(1), located within the layer, is in a bicapped trigonal prism; atom Tb(2), located between the layers, is in a dodecahedron (lower figure). The Tb—O distances range from 2.377(5) Å to 2.535(5) Å, which may be compared with the range of 2.177 Å to 2.551 Å in Tb_2O_3 [5]. The Tb—Se distances are 2.8958(11) Å, 2.9990(11) Å, and 3.0570(5) Å, compared with 2.876(1) Å to 2.984(1) Å in Tb_2Se_3 [6]. Also isostructural with the present compound are the related tellurides $\text{Ln}_2(\text{SiO}_4)\text{Te}$ ($\text{Ln} = \text{Nd}$ [7], Sm [3,7] and Pr [8]). Most of these selenides and tellurides were prepared accidentally.

Table 1. Data collection and handling.

Crystal:	colorless needle, size 0.016 × 0.018 × 0.176 mm
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ :	388.92 cm^{-1}
Diffractometer, scan mode:	Bruker SMART-CCD, $\Delta\omega = 0.3^\circ$
$2\theta_{\text{max}}$:	57.74°
$N(hkl)$ measured, $N(hkl)$ unique:	3715, 605
Criterion for I_{obs} , $N(hkl)_{\text{gt}}$:	$I_{\text{obs}} > 2\sigma(I_{\text{obs}})$, 556
$N(\text{param})_{\text{refined}}$:	42
Program:	SHELXTL [9]

* Correspondence author (e-mail: ibers@chem.northwestern.edu)

Table 2. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	<i>x</i>	<i>y</i>	<i>z</i>	<i>U</i> ₁₁	<i>U</i> ₂₂	<i>U</i> ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
Tb(1)	4d	0.13113(7)	0.03044(7)	1/4	0.0062(3)	0.0049(3)	0.0046(3)	0.0006(2)	0	0
Tb(2)	4c	0.60749(8)	1/4	0	0.0041(3)	0.0057(3)	0.0076(3)	0	0	-0.0013(2)
Se	4d	0.4230(2)	0.3778(1)	1/4	0.0062(5)	0.0073(5)	0.0064(5)	-0.0015(3)	0	0
Si	4c	0.1127(4)	1/4	0	0.005(1)	0.004(1)	0.004(1)	0	0	0.0009(8)
O(1)	8e	0.0542(8)	0.7611(6)	0.1207(5)	0.004(2)	0.007(2)	0.007(2)	0.002(2)	0.001(2)	0.002(2)
O(2)	8e	0.2735(8)	0.0707(7)	0.0310(4)	0.006(2)	0.005(2)	0.008(2)	-0.001(2)	0.001(2)	-0.000(2)

Acknowledgments. This research was supported by U. S. National Science Foundation Grant DMR00-96676 and a Ford Predoctoral Fellowship to K.M. Use was made of the Central Facilities supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

1. Brennan, T. D.; Ibers, J. A.: Lanthanum Orthosilicate Selenide, La₂SeSiO₄. *Acta Crystallogr. C* **47** (1991) 1062-1064.
2. Grupe, M.; Urland, W.: Preparation and Crystal Structure of Nd₂SeSiO₄. *Z. Naturforsch. B* **45** (1990) 465-468.
3. Person, H.; Grupe, M.; Urland, W.: Synthesis and Crystal Structure of Ln₂SeSiO₄ (Ln = Sm, Dy, Ho) and Sm₂TeSiO₄. *Z. Anorg. Allg. Chem.* **626** (2000) 280-283.
4. Stöwe, K.: Structure and Doping of Seleno Silicates: the Crystal Structures of Er₂SeSiO₄ and Er_{3.75}Ca_{0.25}Se_{2.75}Cl_{0.25}Si₂O₇. *Z. Naturforsch. B* **49** (1994) 733-740.
5. Hubbert-Paletta, E.; Müller-Buschbaum, H.: Röntgenographische Untersuchung an Einkristallen von monoklinem Tb₂O₃. *Z. Anorg. Allg. Chem.* **363** (1968) 145-150.
6. Grundmeier, T.; Urland, W.: Zur Kristallstruktur von Tb₂Se₃. *Z. Anorg. Allg. Chem.* **623** (1997) 1744-1746.
7. Yang, Y.; Ibers, J. A.: Accidental Silicon-Containing Compounds: Crystal Structures of La₃Al_{0.44}Si_{0.93}S₇, BaSm₄(SiO₄)₃Se, and Monoclinic and Orthorhombic Ln₂(SiO₄)Te (Ln = Nd and Sm). *J. Solid State Chem.* **155** (2000) 433-440.
8. Weber, F. A.; Schleid, T.: Two Types (A and B) of Pr₂Te[SiO₄]. *Z. Anorg. Allg. Chem.* **625** (1999) 2071-2076.
9. Sheldrick, G. M.: SHELXTL DOS/Windows/NT Version 6.12. Bruker Analytical X-Ray Instruments, Inc., Madison, WI, USA 1998.