© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of tin octa- μ -chloro-hexachloro-octahedro-molybdate(II), $Sn[(Mo_6Cl_8)Cl_6)]$.

A. Flemström* and S. Lidin

Stockholm University, Department of Inorganic Chemistry, Arrhenius Laboratory, S-106 91 Stockholm, Sweden

Received September 23, 2000, CSD-No. 409529

Abstract

Cl₁₄Mo₆Sn, cubic, $Pn\overline{3}$ (No. 201), a = 12.952 Å, $V = 2172.8 \text{ Å}^3$, Z = 4, $R_{gt}(F) = 0.048$, $wR_{ref}(F) = 0.063$, T = 293 K.

Source of material

Single crystals of Sn((Mo₆Cl₈)Cl₆) were grown in evacuated quartz tubes from a well ground mixture of MoCl₂ [1] and commercial SnCl₂ in the molar ratio 2:3 at 1073 K for 19 h. The crystals were yellow, slightly transparent needles.

Experimental details

Due to the sensitivity to moisture all preparative work had to be done in a glove box under Ar-atmosphere. The crystal chosen for the X-ray experiment was mounted on a quartz fibre of 0.1 mm diameter and then encapsulated in a quartz capillary of 0.3 mm diameter.

Discussion

Tin octa- μ -chloro-hexachloro-octahedro-molybdate(II), Sn[(Mo₆Cl₈)Cl₆], has been investigated as part of a project aimed at synthesizing extended molecules with Mo₆Cl₈ as a base. The title compound Sn[(Mo₆Cl₈)Cl₆] is isostructural with Pb[(Mo₆Cl₈)Cl₆] [2], with the Sn atom situated in a chloride

octahedron formed by the bridging chlorine atoms. The Mo atoms are, as in all other reported structures of Mo(II)halides, arranged in an octahedron encapsulated in a chlorine cube [3] as shown in the figure. The structure may be described as an double skutterudite. Skutterudite CoAs₃ [4] is derived from the aristotype, 'ideal', cubic perovskite, by the concerted rotation of the 'ideal' perovskite octahedron around the three fold axes, ([111] direction). The rotation angle φ in skutterudite is $\varphi \approx 35^\circ$ [5]. Due to the differences in size between the octahedra in the title compond the rotation angle φ will differ. The φ value for the smaller chloride octahedron surrounding tin is 23.8°, and for the bigger chloride octahedron surrounding the Mo₆Cl₈ unit, $\varphi = 36.5^\circ$.

Table 1. Data collection and handling.

Crystal: yellow needle, size $0.1 \times 0.2 \times 0.3$ mm Wavelength: Mo K_{α} radiation (0.71073 Å) 4.7 cm Diffractometer, scan mode: STOE IPDS, ϕ $2\theta_{max}$: 56.44° 18628, 900 N(hkl)measured, N(hkl)unique: Criterion for Iobs, N(hkl)gt: $I_{\text{obs}} > 3 \,\sigma(I_{\text{obs}}), 253$ N(param)refined: Programs: SHELXS 97 [6], Jana 2000 [7]

References

- 1. Gmelin Handbook Mo, Suppl. Vol. B5, 250-251.
- Böschen, S.; Keller, H.-L.: Darstellung und Kristallstruktur der homologen Reihe PbMo₆X₁₄, X = Cl, Br, I. Z. Kristallogr. 200 (1992) 305-315.
- Brosset, C.: On the Structure of Complex Compounds of Bivalent Molybdenum II. Arkiv Kemi Mineral. o. Geol. 22A (1947) 1-10.
- Kjekshus, A.; Rakke, T.: Compounds with the Skutterudite Type Crystal Structure. III. Structural Data for Arsenides and Antimonides. Acta Chem. Scand. A 28 (1974) 99-103.
- O'Keeffe, M.; Hyde, B. G.: Some Structures Topologically related to Cubic Perovskite. Acta Crystallogr. B33 (1977) 3802-3813.
- Sheldrick, G.: SHELX-97. Program for the refinement of Crystal Structures. University of Göttingen, Germany 1997.
- Petricek, V.; Dusek, M.: Jana 2000. Institute of Physics, Academy of Sciences of the Czech republic, Praha 2000.

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	х	у	z	<i>U</i> 11	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Мо	24 <i>h</i>	0.8649(2)	0.0282(2)	0.963(2)	0.020(8)	0.0266(7)	0.0239(7)	-0.0007(7)	-0.0016(8)	0.0014(7)
Sn	4 <i>c</i>	1/2	1/2	1/2	0.0292(8)	U_{11}	U_{11}	0.0010(8)	U_{12}	U_{12}
Cl(1)	8 <i>e</i>	0.1363(4)	x	x	0.038(2)	v_{11}	U_{11}	-0.008(2)	U_{12}	U_{12}
Cl(2)	24h	0.3776(4)	0.6883(4)	0.9337(4)	0.030(3)	0.031(3)	0.030(3)	0.009(2)	-0.003(2)	0.002(2)
CI(3)	24h	0.5891(5)	0.8133(4)	0.0698(5)	0.044(4)	0.020(2)	0.068(5)	-0.004(2)	-0.010(3)	-0.006(3)

^{*} Correspondence author (e-mail: andreasf@inorg.su.se)