
Crystal structure of *catena*-adipato-*O*,*O'*-diaquacopper(II), Cu(C₆H₈O₄)(H₂O)₂

Y.-Q. Zheng*, A.-Y. Pan and J.-L. Lin

Ningbo University, Institute for Solid State Chemistry, Ningbo, Zhejiang, 315211 P. R. China

Received October 19, 2000, CCDC-No. 1267/545

Abstract

C₆H₁₂CuO₆, triclinic, $P\overline{1}$ (No. 2), a = 3.861(1) Å, b = 4.928(1) Å, c = 11.326(2) Å, $\alpha = 84.34(2)^{\circ}$, $\beta = 87.08(1)^{\circ}$, $\gamma = 83.45(2)^{\circ}$, V = 212.9 Å³, Z = 1, $R_{gt}(F) = 0.040$, $wR_{ref}(F^2) = 0.104$, T = 293 K.

Source of material

The title compound was synthesized by the reaction of 0.50 g (3.42 mmol) adipic acid with an excess of freshly prepared CuCO₃ in 50 ml doubly-destilled water, followed by removing the unreacted CuCO₃. Blue crystals grew from the filtrate at room temperature by slow evaporation for several weeks.

Discussion

In the crystal structure, each Cu atom is square-planarly coordinated by four O atoms from two bis-monodentate adipate ligands and two water molecules to form a trans configuration with $d(Cu-O) = 1.930 \text{ Å } (2\times), 1.969 \text{ Å } (2\times).$ The Cu atom is exactly located in the least-squares plane defined by the four coordinating O atoms. Through the carboxyl O atoms on both ends, the adipate (C₆H₈O₄)²⁻ ligands bridge the Cu atoms to form 1D chains $[Cu(C_6H_8O_4)_{2/2}(H_2O)_2]$, which propagate parallel to [011] and are held together by interchain hydrogen bonds between water and carboxyl oxygen atoms with $d(O \cdot \cdot \cdot O) = 2.630 \text{ Å}$ and 2.688 Åand $\angle O-H\cdots O = 154^{\circ}$ and 169° . The adipate $(C_6H_8O_4)^{2-}$ ligands are centered at 1e positions and their bridging fashion is similar to that observed in the Co adipate reported previously [1]. All backbone C atoms are nearly coplanar and the dihedral angle between the carboxyl plane and the C backbone plane is 19.9°. The terminal C—C bonds of 1.510 Å are significantly shorter than the rests

averaged at 1.523 Å and the terminal ∠C-C-C angles of 113.9° are slightly larger than the rests of 111.8°. The C—O bond length of 1.297 Å to the coordinating O atom is substantially larger than that of 1.235 Å to the non-coordinating one. The closest Cu···Cu distance of 3.861Å does not indicate interaction between the Cu atoms.

Table 1. Data collection and handling.

Crystal:	blue block, size $0.089 \times 0.178 \times 0.222$ mm
Wavelength:	Mo K_{α} radiation (0.71073 Å)
μ:	25.61 cm ⁻¹
Diffractometer, scan mode:	Bruker P4, $\theta/2\theta$
2θ _{max} :	55°
N(hkl) _{measured} , N(hkl) _{unique} :	1413, 982
Criterion for I_{obs} , $N(hkl)_{gl}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 966$
N(param)refined:	62
Programs:	SHELXS-97 [2], SHELXL-97 [3]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	<u> </u>	у	z	Uiso	
H(2A)	2i	0.3925	-0.6305	0.8100	0.028	
H(2B)	2i	0.7504	-0.5296	0.8100	0.037	
H(3A)	2i	0.5704	-0.2185	0.9632	0.028	
H(3B)	2i	0.198	-0.3234	0.9689	0.027	
HA(O3)	2i	0.2387	-0.3626	0.4156	0.050	
HB(O3)	2i	0.1217	-0.1382	0.3597	0.050	

^{*} Correspondence author (e-mail: zhengcm@nbu.edu.cn)

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	х	y	ε	<i>U</i> ₁₁	U ₂₂	<i>U</i> ₃₃	U_{12}	U_{13}	U_{23}
Cu	1 <i>f</i>	1/2	0	1/2	0.0431(3)	0.0153(3)	0.0119(3)	0.0032(2)	0.0005(2)	0.0016(2)
C(1)	2i	0.4047(6)	~0.2584(5)	0.7300(2)	0.029(1)	0.020(1)	0.017(1)	0.0006(8)	-0.0035(8)	0.0018(9)
C(2)	2i	0.5169(6)	-0.4766(5)	0.8279(2)	0.028(1)	0.022(1)	0.016(1)	0.0055(8)	0.0001(8)	0.0025(9)
C(3)	2i	0.4477(6)	-0.3847(5)	0.9523(2)	0.027(1)	0.024(1)	0.014(1)	0.0036(9)	-0.0001(8)	0.0023(9)
O(1)	2i	0.5481(6)	-0.2942(4)	0.6258(2)	0.049(1)	0.0182(8)	0.0152(9)	0.0032(7)	0.0008(7)	0.0021(7)
O(2)	2i	0.1904(5)	-0.0608(4)	0.7502(2)	0.039(1)	0.028(1)	0.024(1)	0.0117(8)	-0.0049(8)	0.0016(8)
O(3)	2i	0.1752(5)	-0.2022(4)	0.4238(2)	0.044(1)	0.0182(8)	0.0197(9)	0.0058(7)	-0.0029(7)	-0.0009(7)

Acknowledgments. The authors gratefully acknowledge the financial support of Zhejiang Provincial Natural Science Foundation of China (RC99034) and also thank Ningbo Scientific-Technical Commission and Ningbo Educational Committee for the generous support to purchase the Bruker P4 diffractometer.

References

- Zheng, Y.-Q.; Lin, J.-L.; Pan, A.-Y.: A novel adipate bridged supramolecular layer: crystal structure of [(H₂O)₄Co(μ-H₂O)₂Co(μ-C₆H₈O₄)_{4/2}] · 4H₂O. Z. Anorg. Allg. Chem. 626 (2000) 1718-1720.
- 4H₂O. Z. Anorg. Allg. Chem. 626 (2000) 1718-1720.
 Sheldrick, G. M.: Phase Annealing in SHELX-90: Direct Methods for Larger Structures. Acta Crystallogr. A46 (1990) 467-473.
- Larger Structures. Acta Crystallogr. A46 (1990) 467-473.
 Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structure University of Göttingen, Germany 1997.